咨询与建议

限定检索结果

文献类型

  • 183 篇 期刊文献
  • 37 篇 会议

馆藏范围

  • 220 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 156 篇 工学
    • 65 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 48 篇 化学工程与技术
    • 16 篇 电气工程
    • 16 篇 信息与通信工程
    • 12 篇 控制科学与工程
    • 11 篇 土木工程
    • 10 篇 材料科学与工程(可...
    • 10 篇 电子科学与技术(可...
    • 10 篇 生物医学工程(可授...
    • 8 篇 仪器科学与技术
    • 7 篇 网络空间安全
    • 6 篇 动力工程及工程热...
    • 6 篇 生物工程
    • 5 篇 冶金工程
    • 5 篇 建筑学
    • 5 篇 安全科学与工程
  • 84 篇 理学
    • 38 篇 数学
    • 21 篇 物理学
    • 12 篇 化学
    • 12 篇 统计学(可授理学、...
    • 9 篇 生物学
    • 5 篇 天文学
    • 5 篇 系统科学
  • 20 篇 医学
    • 16 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 6 篇 公共卫生与预防医...
  • 20 篇 管理学
    • 11 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
  • 4 篇 教育学
    • 4 篇 心理学(可授教育学...
  • 1 篇 经济学
  • 1 篇 法学

主题

  • 8 篇 machine learning
  • 5 篇 solar cells
  • 4 篇 self-assembly
  • 3 篇 measurement inva...
  • 3 篇 deep learning
  • 3 篇 smart cities
  • 3 篇 predictive model...
  • 3 篇 stochastic syste...
  • 3 篇 data models
  • 2 篇 causal discovery
  • 2 篇 perovskite
  • 2 篇 structural prope...
  • 2 篇 computational co...
  • 2 篇 electrocatalyst
  • 2 篇 safety
  • 2 篇 metamaterials
  • 2 篇 breast cancer
  • 2 篇 defect passivati...
  • 2 篇 learning algorit...
  • 2 篇 perovskite solar...

机构

  • 30 篇 center for advan...
  • 24 篇 riken center for...
  • 9 篇 contribution: da...
  • 8 篇 ntt data mathema...
  • 7 篇 contribution: da...
  • 6 篇 contribution: me...
  • 6 篇 contribution: ​i...
  • 6 篇 graduate school ...
  • 5 篇 leeds institute ...
  • 5 篇 center for psych...
  • 5 篇 department of in...
  • 5 篇 institute for pa...
  • 5 篇 department of st...
  • 5 篇 university of pi...
  • 5 篇 arnie charbonnea...
  • 5 篇 ilsbio llc bioba...
  • 5 篇 department of mo...
  • 5 篇 osaka internatio...
  • 5 篇 research departm...
  • 5 篇 department of ve...

作者

  • 18 篇 zhou xiaokang
  • 13 篇 xiaokang zhou
  • 13 篇 suzuki taiji
  • 11 篇 ishikawa isao
  • 10 篇 shimizu shohei
  • 10 篇 ikeda masahiro
  • 7 篇 tamura ryo
  • 7 篇 koji tsuda
  • 7 篇 murata tomoya
  • 7 篇 tsuda koji
  • 5 篇 nitanda atsushi
  • 4 篇 mcalinn kenichir...
  • 4 篇 ryo tamura
  • 4 篇 qi lianyong
  • 4 篇 hashimoto yuka
  • 4 篇 takanashi kōsaku
  • 4 篇 jun seita
  • 4 篇 yan ke
  • 3 篇 fuss johannes
  • 3 篇 cárdenas-lópez g...

语言

  • 212 篇 英文
  • 8 篇 其他
检索条件"机构=Advanced Data Science Project"
220 条 记 录,以下是71-80 订阅
排序:
SoLar: sinkhorn label refinery for imbalanced partial-label learning  22
SoLar: sinkhorn label refinery for imbalanced partial-label ...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Haobo Wang Mingxuan Xia Yixuan Li Yuren Mao Lei Feng Gang Chen Junbo Zhao Key Lab of Intelligent Computing based Big Data of Zhejiang Province Zhejiang University School of Software Technology Zhejiang University Department of Computer Sciences University of Wisconsin-Madison College of Computer Science Chongqing University and Center for Advanced Intelligence Project RIKEN
Partial-label learning (PLL) is a peculiar weakly-supervised learning task where the training samples are generally associated with a set of candidate labels instead of single ground truth. While a variety of label di...
来源: 评论
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI  41
Position: Bayesian Deep Learning is Needed in the Age of Lar...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina Aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论
Reproducing kernel Hilbert C*-module and kernel mean embeddings
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2021年 第1期22卷 12292-12347页
作者: Yuka Hashimoto Isao Ishikawa Masahiro Ikeda Fuyuta Komura Takeshi Katsura Yoshinobu Kawahara NTT Network Service Systems Laboratories NTT Corporation Midori-cho Musashinoshi Tokyo Japan and Graduate School of Science and Technology Keio University Hiyoshi Kohoku Yokohama Kanagawa Japan Center for Data Science Ehime University Bunkyo-cho Matsuyama Ehime Japan and Center for Advanced Intelligence Project RIKEN Nihonbashi Chuo-ku Tokyo Japan Center for Advanced Intelligence Project RIKEN Nihonbashi Chuo-ku Tokyo Japan and Faculty of Science and Technology Keio University Hiyoshi Kohoku Yokohama Kanagawa Japan Faculty of Science and Technology Keio University Hiyoshi Kohoku Yokohama Kanagawa Japan and Center for Advanced Intelligence Project RIKEN Nihonbashi Chuo-ku Tokyo Japan Institute of Mathematics for Industry Kyushu University Motooka Nishi-ku Fukuoka Japan and Center for Advanced Intelligence Project RIKEN Nihonbashi Chuo-ku Tokyo Japan
Kernel methods have been among the most popular techniques in machine learning, where learning tasks are solved using the property of reproducing kernel Hilbert space (RKHS). In this paper, we propose a novel data ana... 详细信息
来源: 评论
Selective inference in propensity score analysis
arXiv
收藏 引用
arXiv 2021年
作者: Ninomiya, Yoshiyuki Umezu, Yuta Takeuchi, Ichiro Department of Statistical Inference and Mathematics The Institute of Statistical Mathematics Japan School of Information and Data Science Nagasaki University Japan Department of Computer Science Nagoya Institute of Technology RIKEN Center for Advanced Intelligence Project Japan
Selective inference (post-selection inference) is a methodology that has attracted much attention in recent years in the fields of statistics and machine learning. Naive inference based on data that are also used for ... 详细信息
来源: 评论
Bias-Variance Reduced Local SGD for less heterogeneous federated learning
arXiv
收藏 引用
arXiv 2021年
作者: Murata, Tomoya Suzuki, Taiji NTT DATA Mathematical Systems Inc. Tokyo Japan Graduate School of Information Science and Technology University of Tokyo Tokyo Japan Center for Advanced Intelligence Project RIKEN Tokyo Japan
Recently, local SGD has got much attention and been extensively studied in the distributed learning community to overcome the communication bottleneck problem. However, the superiority of local SGD to minibatch SGD on... 详细信息
来源: 评论
Koopman and Perron-Frobenius Operators on reproducing kernel Banach spaces
arXiv
收藏 引用
arXiv 2022年
作者: Ikeda, Masahiro Ishikawa, Isao Schlosser, Corbinian LAAS-CNRS 7 avenue du colonel Roche ToulouseF-31400 France Center for Data Science Ehime University Matsuyama790-8577 Japan Center for Advanced Intelligence Project RIKEN Tokyo103-0027 Japan Department of Mathematics Keio University Yokohama223-8522 Japan
Koopman and Perron-Frobenius operators for dynamical systems have been getting popular in a number of fields in science these days. Properties of the Koopman operator essentially depend on the choice of function space... 详细信息
来源: 评论
COMPRESSION BASED BOUND FOR NON-COMPRESSED NETWORK: UNIFIED GENERALIZATION ERROR ANALYSIS OF LARGE COMPRESSIBLE DEEP NEURAL NETWORK  8
COMPRESSION BASED BOUND FOR NON-COMPRESSED NETWORK: UNIFIED ...
收藏 引用
8th International Conference on Learning Representations, ICLR 2020
作者: Suzuki, Taiji Abe, Hiroshi Nishimura, Tomoaki Graduate School of Information Science and Technology The University of Tokyo Japan Center for Advanced Intelligence Project RIKEN Japan Japan Digital Design Japan iPride Co. Ltd. Japan NTT Data Corporation Japan
One of the biggest issues in deep learning theory is the generalization ability of networks with huge model size. The classical learning theory suggests that overparameterized models cause overfitting. However, practi... 详细信息
来源: 评论
SoLar: Sinkhorn Label Refinery for Imbalanced Partial-Label Learning
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Haobo Xia, Mingxuan Li, Yixuan Mao, Yuren Feng, Lei Chen, Gang Zhao, Junbo Key Lab of Intelligent Computing based Big Data of Zhejiang Province Zhejiang University China School of Software Technology Zhejiang University China Department of Computer Sciences University of Wisconsin-Madison United States College of Computer Science Chongqing University China Center for Advanced Intelligence Project RIKEN Japan
Partial-label learning (PLL) is a peculiar weakly-supervised learning task where the training samples are generally associated with a set of candidate labels instead of single ground truth. While a variety of label di... 详细信息
来源: 评论
Editorial: AI and IoT applications of smart buildings and smart environment design, construction and maintenance
收藏 引用
Building and Environment 2023年 229卷
作者: Yan, Ke Zhou, Xiaokang Yang, Bin College of Mechanical and Vehicle Engineering Hunan University Changsha410012 China Department of the Built Environment College of Design and Engineering National University of Singapore 4 Architecture Drive 117566 Singapore Faculty of Data Science Shiga University Hikone5228522 Japan RIKEN Center for Advanced Intelligence Project RIKEN Tokyo1030027 Japan School of Energy and Safety Engineering Tianjin Chengjian University Tianjin300384 China
来源: 评论
PiCO+: Contrastive Label Disambiguation for Robust Partial Label Learning
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Haobo Xiao, Ruixuan Li, Yixuan Feng, Lei Niu, Gang Chen, Gang Zhao, Junbo Key Lab of Intelligent Computing Based Big Data of Zhejiang Province Zhejiang University Hangzhou310027 China Department of Computer Sciences University of WisconsinMadison MadisonWI53706 United States The College of Computer Science Chongqing University Chongqing400044 China RIKEN Center for Advanced Intelligence Project Tokyo Japan
Partial label learning (PLL) is an important problem that allows each training example to be labeled with a coarse candidate set, which well suits many real-world data annotation scenarios with label ambiguity. Despit... 详细信息
来源: 评论