International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from t...
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from these competitions. Do they really generate scientific progress? What are common and successful participation strategies? What makes a solution superior to a competing method? To address this gap in the literature, we performed a multicenter study with all 80 competitions that were conducted in the scope of IEEE ISBI 2021 and MICCAI 2021. Statistical analyses performed based on comprehensive descriptions of the submitted algorithms linked to their rank as well as the underlying participation strategies revealed common characteristics of winning solutions. These typically include the use of multi-task learning (63%) and/or multi-stage pipelines (61%), and a focus on augmentation (100%), image preprocessing (97%), data curation (79%), and post-processing (66%). The “typical” lead of a winning team is a computer scientist with a doctoral degree, five years of experience in biomedical image analysis, and four years of experience in deep learning. Two core general development strategies stood out for highly-ranked teams: the reflection of the metrics in the method design and the focus on analyzing and handling failure cases. According to the organizers, 43% of the winning algorithms exceeded the state of the art but only 11% completely solved the respective domain problem. The insights of our study could help researchers (1) improve algorithm development strategies when approaching new problems, and (2) focus on open research questions revealed by this work.
Chimera states in spatiotemporal dynamical systems have been investigated in physical, chemical, and biological systems, and have been shown to be robust against random perturbations. How do chimera states achieve the...
详细信息
Chimera states in spatiotemporal dynamical systems have been investigated in physical, chemical, and biological systems, and have been shown to be robust against random perturbations. How do chimera states achieve their robustness? We uncover a self-adaptation behavior by which, upon a spatially localized perturbation, the coherent component of the chimera state spontaneously drifts to an optimal location as far away from the perturbation as possible, exposing only its incoherent component to the perturbation to minimize the disturbance. A systematic numerical analysis of the evolution of the spatiotemporal pattern of the chimera state towards the optimal stable state reveals an exponential relaxation process independent of the spatial location of the perturbation, implying that its effects can be modeled as restoring and damping forces in a mechanical system and enabling the articulation of a phenomenological model. Not only is the model able to reproduce the numerical results, it can also predict the trajectory of drifting. Our finding is striking as it reveals that, inherently, chimera states possess a kind of “intelligence” in achieving robustness through self-adaptation. The behavior can be exploited for the controlled generation of chimera states with their coherent component placed in any desired spatial region of the system.
This paper addresses the optimized tracking cooperative control problem for multi-agent systems with periodic sampling and directed communication topology via robust model predictive control *** proposed optimized tra...
详细信息
ISBN:
(纸本)9781538629185
This paper addresses the optimized tracking cooperative control problem for multi-agent systems with periodic sampling and directed communication topology via robust model predictive control *** proposed optimized tracking cooperative control strategy relaxes the assumptions in existing works that the control gain and the local input must be continuous and the states information exchange has no recourse *** the conditions of the optimized consensus and the communication cost being satisfied,the tracking cooperative control law with bounded parameters is developed based on the periodic *** shows that if the sampling condition is satisfied,the multi-agent systems will reach the optimized *** results are provided to verify the proposed approach.
While the importance of automatic image analysis is continuously increasing, recent meta-research revealed major flaws with respect to algorithm validation. Performance metrics are particularly key for meaningful, obj...
详细信息
In this paper, a mechanical transmission based on cable pulley is proposed for human-like actuation in the artificial ankle joints of human-scale. The anatomy articular characteristics of the human ankle is discussed ...
详细信息
In this paper, a mechanical transmission based on cable pulley is proposed for human-like actuation in the artificial ankle joints of human-scale. The anatomy articular characteristics of the human ankle is discussed for proper biomimetic inspiration in designing an accurate, efficient, and robust motion control of artificial ankle joint devices. The design procedure is presented through the inclusion of conceptual considerations and design details for an interactive solution of the transmission system. A mechanical design is elaborated for the ankle joint angular with pitch motion. A multi-body dynamic simulation model is elaborated accordingly and evaluated numerically in the ADAMS environment. Results of the numerical simulations are discussed to evaluate the dynamic performance of the proposed design solution and to investigate the feasibility of the proposed design in future applications for humanoid robots.
We propose a new framework combining weak measurement and second-order correlated technique. The theoretical analysis shows that weak value amplification (WVA) experiment can also be implemented by a second-order co...
详细信息
We propose a new framework combining weak measurement and second-order correlated technique. The theoretical analysis shows that weak value amplification (WVA) experiment can also be implemented by a second-order correlated system. We then build two-dimensional second-order correlated function patterns for achieving higher amplification factor and discuss the signal-to-noise ratio influence. Several advantages can be obtained by our proposal. For instance, detectors with high resolution are not necessary. Moreover, detectors with low saturation intensity are available in WVA setup. Finally, type-one technical noise can be effectively suppressed.
This paper presents a safe learning framework that employs an adaptive model learning algorithm together with barrier certificates for systems with possibly nonstationary agent dynamics. To extract the dynamic structu...
详细信息
Chimera states are spatiotemporal patterns in which coherence and incoherence coexist. We observe the coexistence of synchronous (coherent) and desynchronous (incoherent) domains in a neuronal network. The network is ...
详细信息
The study presents a general framework for discovering underlying Partial Differential Equations (PDEs) using measured spatiotemporal data. The method, called Sparse Spatiotemporal System Discovery (S3d), decides whic...
详细信息
暂无评论