咨询与建议

限定检索结果

文献类型

  • 218 篇 会议
  • 124 篇 期刊文献

馆藏范围

  • 342 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 200 篇 工学
    • 92 篇 软件工程
    • 91 篇 计算机科学与技术...
    • 87 篇 控制科学与工程
    • 42 篇 机械工程
    • 34 篇 生物工程
    • 29 篇 生物医学工程(可授...
    • 28 篇 信息与通信工程
    • 24 篇 光学工程
    • 20 篇 仪器科学与技术
    • 20 篇 电气工程
    • 17 篇 电子科学与技术(可...
    • 16 篇 化学工程与技术
    • 10 篇 力学(可授工学、理...
    • 9 篇 材料科学与工程(可...
    • 8 篇 交通运输工程
    • 7 篇 土木工程
    • 6 篇 动力工程及工程热...
    • 6 篇 船舶与海洋工程
    • 5 篇 建筑学
  • 112 篇 理学
    • 42 篇 物理学
    • 39 篇 数学
    • 37 篇 生物学
    • 22 篇 系统科学
    • 13 篇 化学
    • 8 篇 统计学(可授理学、...
  • 34 篇 管理学
    • 25 篇 管理科学与工程(可...
    • 11 篇 图书情报与档案管...
  • 21 篇 医学
    • 17 篇 临床医学
    • 12 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
  • 3 篇 经济学
  • 3 篇 农学
  • 2 篇 法学
  • 2 篇 军事学
  • 1 篇 教育学

主题

  • 14 篇 control systems
  • 13 篇 process control
  • 12 篇 feature extracti...
  • 11 篇 robots
  • 10 篇 intelligent robo...
  • 10 篇 intelligent cont...
  • 10 篇 training
  • 8 篇 robot kinematics
  • 7 篇 robot sensing sy...
  • 7 篇 accuracy
  • 7 篇 mathematical mod...
  • 6 篇 conferences
  • 6 篇 legged locomotio...
  • 6 篇 three-dimensiona...
  • 6 篇 force
  • 6 篇 mobile robots
  • 6 篇 predictive model...
  • 6 篇 visualization
  • 6 篇 shape
  • 5 篇 networked contro...

机构

  • 42 篇 school of automa...
  • 41 篇 hubei key labora...
  • 37 篇 engineering rese...
  • 21 篇 beijing advanced...
  • 12 篇 shanghai enginee...
  • 10 篇 autonomous syste...
  • 9 篇 intelligent robo...
  • 8 篇 university of ch...
  • 5 篇 department of au...
  • 5 篇 institute of med...
  • 5 篇 department of au...
  • 5 篇 shaanxi key labo...
  • 5 篇 key laboratory o...
  • 5 篇 key laboratory o...
  • 4 篇 shanghai jiao to...
  • 4 篇 department of au...
  • 4 篇 ieee
  • 4 篇 robotics researc...
  • 4 篇 ihu strasbourg s...
  • 4 篇 ministry of educ...

作者

  • 17 篇 qiang huang
  • 14 篇 wang hesheng
  • 11 篇 hai-tao zhang
  • 11 篇 wang guangming
  • 11 篇 jingcheng wang
  • 9 篇 majid nili ahmad...
  • 8 篇 zhang hai-tao
  • 8 篇 qing shi
  • 7 篇 weihua cao
  • 7 篇 huang jian
  • 7 篇 toshio fukuda
  • 6 篇 yifeng tang
  • 6 篇 chao gan
  • 6 篇 hadi moradi
  • 6 篇 chuanshang luo
  • 6 篇 huaping wang
  • 6 篇 yifan xu
  • 6 篇 chuancong tang
  • 6 篇 zhihui huang
  • 6 篇 sheng guo

语言

  • 327 篇 英文
  • 9 篇 其他
  • 7 篇 中文
检索条件"机构=Advanced Robotics and Intelligent Systems Laboratory & Control and Intelligent Processing Center"
342 条 记 录,以下是341-350 订阅
排序:
Why is the Winner the Best?
Why is the Winner the Best?
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: M. Eisenmann A. Reinke V. Weru M. D. Tizabi F. Isensee T. J. Adler S. Ali V. Andrearczyk M. Aubreville U. Baid S. Bakas N. Balu S. Bano J. Bernal S. Bodenstedt A. Casella V. Cheplygina M. Daum M. De Bruijne A. Depeursinge R. Dorent J. Egger D. G. Ellis S. Engelhardt M. Ganz N. Ghatwary G. Girard P. Godau A. Gupta L. Hansen K. Harada M. Heinrich N. Heller A. Hering A. Huaulmé P. Jannin A. E. Kavur O. Kodym M. Kozubek J. Li H. Li J. Ma C. Martín-Isla B. Menze A. Noble V. Oreiller N. Padoy S. Pati K. Payette T. Rädsch J. Rafael-Patiño V. Singh Bawa S. Speidel C. H. Sudre K. Van Wijnen M. Wagner D. Wei A. Yamlahi M. H. Yap C. Yuan M. Zenk A. Zia D. Zimmerer D. Aydogan B. Bhattarai L. Bloch R. Brüngel J. Cho C. Choi Q. Dou I. Ezhov C. M. Friedrich C. Fuller R. R. Gaire A. Galdran Á. García Faura M. Grammatikopoulou S. Hong M. Jahanifar I. Jang A. Kadkhodamohammadi I. Kang F. Kofler S. Kondo H. Kuijf M. Li M. Luu T. Martinčič P. Morais M. A. Naser B. Oliveira D. Owen S. Pang J. Park S. Park S. Płotka E. Puybareau N. Rajpoot K. Ryu N. Saeed A. Shephard P. Shi D. Štepec R. Subedi G. Tochon H. R. Torres H. Urien J. L. Vilaça K. A. Wahid H. Wang J. Wang L. Wang X. Wang B. Wiestler M. Wodzinski F. Xia J. Xie Z. Xiong S. Yang Y. Yang Z. Zhao K. Maier-Hein P. F. Jäger A. Kopp-Schneider L. Maier-Hein Division of Intelligent Medical Systems German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Imaging German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Division of Biostatistics German Cancer Research Center (DKFZ) Heidelberg Germany Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Engineering and Physical Sciences School of Computing University of Leeds Leeds UK Institute of Informatics School of Management HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland Sierre Switzerland Department of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Lausanne Switzerland Technische Hochschule Ingolstadt Ingolstadt Germany Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA) University of Pennsylvania Philadelphia PA USA Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology University of Washington Seattle WA USA Department of Computer Science Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) University College London London UK Universitat Autònoma de Barcelona & Computer Vision Center Barcelona Spain Division of Translational Surgical Oncology National Center for Tumor Diseases (NCT/UCC) Dresden Dresden Germany Department of Advanced Robotics Istituto Italiano di Tecnologia Italy Department of Electronics Information and Bioengineering Politecnico di Milano Milan Italy IT University of Copenhagen Copenhagen Denmark Department of General Visceral and Transplantation Surgery Heidelberg University Hospital Heidelberg Germany Department of Radiology and Nuc
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from t...
来源: 评论
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
arXiv
收藏 引用
arXiv 2018年
作者: Bakas, Spyridon Reyes, Mauricio Jakab, Andras Bauer, Stefan Rempfler, Markus Crimi, Alessandro Shinohara, Russell Takeshi Berger, Christoph Ha, Sung Min Rozycki, Martin Prastawa, Marcel Alberts, Esther Lipkova, Jana Freymann, John Kirby, Justin Bilello, Michel Fathallah-Shaykh, Hassan M. Wiest, Roland Kirschke, Jan Wiestler, Benedikt Colen, Rivka Kotrotsou, Aikaterini Lamontagne, Pamela Marcus, Daniel Milchenko, Mikhail Nazeri, Arash Weber, Marc-Andr Mahajan, Abhishek Baid, Ujjwal Gerstner, Elizabeth Kwon, Dongjin Acharya, Gagan Agarwal, Manu Alam, Mahbubul Albiol, Alberto Albiol, Antonio Albiol, Francisco J. Alex, Varghese Allinson, Nigel Amorim, Pedro H.A. Amrutkar, Abhijit Anand, Ganesh Andermatt, Simon Arbel, Tal Arbelaez, Pablo Avery, Aaron Azmat, Muneeza Pranjal, B. Bai, Wenjia Banerjee, Subhashis Barth, Bill Batchelder, Thomas Batmanghelich, Kayhan Battistella, Enzo Beers, Andrew Belyaev, Mikhail Bendszus, Martin Benson, Eze Bernal, Jose Bharath, Halandur Nagaraja Biros, George Bisdas, Sotirios Brown, James Cabezas, Mariano Cao, Shilei Cardoso, Jorge M. Carver, Eric N. Casamitjana, Adri Castillo, Laura Silvana Cat, Marcel Cattin, Philippe Cérigues, Albert Chagas, Vinicius S. Chandra, Siddhartha Chang, Yi-Ju Chang, Shiyu Chang, Ken Chazalon, Joseph Chen, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Cheng, Kun Choudhury, Ahana Roy Chylla, Roger Clrigues, Albert Colleman, Steven Colmeiro, Ramiro German Rodriguez Combalia, Marc Costa, Anthony Cui, Xiaomeng Dai, Zhenzhen Dai, Lutao Daza, Laura Alexandra Deutsch, Eric Ding, Changxing Dong, Chao Dong, Shidu Dudzik, Wojciech Eaton-Rosen, Zach Egan, Gary Escudero, Guilherme Estienne, Tho Everson, Richard Fabrizio, Jonathan Fan, Yong Fang, Longwei Feng, Xue Ferrante, Enzo Fidon, Lucas Fischer, Martin French, Andrew P. Fridman, Naomi Fu, Huan Fuentes, David Gao, Yaozong Gates, Evan Gering, David Gholami, Amir Gierke, Willi Glocker, Ben Gong, Mingming Gonzlez-Vill, Sandra Grosges, T. Guan, Yuanfang Guo, Sheng Gupta, Sudeep Han, Woo-Sup Han, Il Song Harmuth, Ko Center for Biomedical Image Computing and Analytics University of Pennsylvania PhiladelphiaPA United States Department of Radiology Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Institute for Surgical Technology and Biomechanics University of Bern Bern Switzerland Center for MR-Research University Children's Hospital Zurich Zurich Switzerland Support Centre for Advanced Neuroimaging Inselspital Institute for Diagnostic and Interventional Neuroradiology Bern University Hospital Bern Switzerland University Hospital of Zurich Zurich Switzerland Center for Clinical Epidemiology and Biostatistics University of Pennsylvania Philadelphia United States Image-Based Biomedical Modeling Group Technical University of Munich Munich Germany Icahn School of Medicine Mount Sinai Health System New YorkNY United States Leidos Biomedical Research Inc. Frederick National Laboratory for Cancer Research FrederickMD21701 United States Cancer Imaging Program National Cancer Institute National Institutes of Health BethesdaMD20814 United States Department of Neurology University of Alabama at Birmingham BirminghamAL United States Department of Diagnostic Radiology University of Texas MD Anderson Cancer Center HoustonTX United States Department of Psychology Washington University St. LouisMO United States Neuroimaging Informatics and Analysis Center Washington University St. LouisMO United States Department of Radiology Washington University St. LouisMO United States Institute of Diagnostic and Interventional Radiology Pediatric Radiology and Neuroradiology University Medical Center Rostock Ernst-Heydemann-Str. 6 Rostock18057 Germany Tata Memorial Centre Homi Bhabha National Institute Mumbai India Shri Guru Gobind Singhji Institute of Engineering and Technology Nanded India NVIDIA Santa Clara
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrot... 详细信息
来源: 评论