咨询与建议

限定检索结果

文献类型

  • 309 篇 期刊文献
  • 167 篇 会议
  • 2 册 图书

馆藏范围

  • 478 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 294 篇 工学
    • 157 篇 计算机科学与技术...
    • 135 篇 软件工程
    • 53 篇 化学工程与技术
    • 37 篇 信息与通信工程
    • 37 篇 生物工程
    • 34 篇 光学工程
    • 30 篇 控制科学与工程
    • 30 篇 生物医学工程(可授...
    • 26 篇 电气工程
    • 21 篇 仪器科学与技术
    • 17 篇 机械工程
    • 16 篇 电子科学与技术(可...
    • 14 篇 力学(可授工学、理...
    • 12 篇 航空宇航科学与技...
    • 10 篇 网络空间安全
    • 9 篇 材料科学与工程(可...
  • 194 篇 理学
    • 79 篇 物理学
    • 58 篇 数学
    • 44 篇 生物学
    • 29 篇 统计学(可授理学、...
    • 24 篇 地球物理学
    • 22 篇 化学
    • 16 篇 系统科学
    • 10 篇 大气科学
  • 61 篇 管理学
    • 33 篇 管理科学与工程(可...
    • 32 篇 图书情报与档案管...
    • 14 篇 工商管理
  • 35 篇 医学
    • 31 篇 临床医学
    • 20 篇 基础医学(可授医学...
    • 13 篇 公共卫生与预防医...
  • 7 篇 经济学
  • 6 篇 法学
  • 6 篇 农学
  • 5 篇 教育学

主题

  • 12 篇 training
  • 11 篇 machine learning
  • 11 篇 accuracy
  • 10 篇 feature extracti...
  • 9 篇 convolutional ne...
  • 7 篇 internet of thin...
  • 7 篇 computer archite...
  • 7 篇 synchronization
  • 6 篇 support vector m...
  • 6 篇 deep learning
  • 6 篇 predictive model...
  • 6 篇 real-time system...
  • 6 篇 prediction algor...
  • 6 篇 artificial intel...
  • 6 篇 data models
  • 5 篇 object detection
  • 5 篇 deep neural netw...
  • 5 篇 software enginee...
  • 5 篇 optimization
  • 5 篇 graph neural net...

机构

  • 18 篇 beijing advanced...
  • 17 篇 columbia univers...
  • 17 篇 university of il...
  • 16 篇 helsinki institu...
  • 16 篇 stefan meyer ins...
  • 16 篇 blackett laborat...
  • 16 篇 lpthe
  • 16 篇 university of al...
  • 16 篇 university of vi...
  • 16 篇 royal holloway
  • 16 篇 institut de fisi...
  • 16 篇 syracuse univers...
  • 16 篇 university of lo...
  • 16 篇 inaf-oats
  • 16 篇 department of ph...
  • 16 篇 tokyo metropolit...
  • 16 篇 university of co...
  • 16 篇 weizmann institu...
  • 16 篇 college park
  • 16 篇 university of ed...

作者

  • 16 篇 v.i.belousov
  • 16 篇 j.beringer
  • 14 篇 g.raffelt
  • 14 篇 f.krauss
  • 14 篇 j.anderson
  • 14 篇 g.weiglein
  • 14 篇 h.murayama
  • 14 篇 j.parsons
  • 14 篇 j.d.jackson
  • 14 篇 g.d'ambrosio
  • 14 篇 r.s.chivukula
  • 14 篇 y.kwon
  • 14 篇 m.white
  • 14 篇 m.drees
  • 14 篇 s.pagan griso
  • 14 篇 p.de jong
  • 14 篇 o.dahl
  • 14 篇 b.foster
  • 14 篇 y.makida
  • 14 篇 k.terashi

语言

  • 428 篇 英文
  • 46 篇 其他
  • 5 篇 中文
检索条件"机构=Advanced Studies in Data Science and Software Engineering"
478 条 记 录,以下是201-210 订阅
排序:
Discovery of High-Temperature Superconducting Ternary Hydrides via Deep Learning
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Xiaoyang Zhang, Chengqian Wang, Zhenyu Liu, Hanyu Lv, Jian Wang, Han Weinan, E. Ma, Yanming National Key Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Fenghao East Road 2 Beijing100094 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China Key Laboratory of Material Simulation Methods & Software of Ministry of Education State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun130012 China International Center of Future Science Jilin University Changchun130012 China HEDPS CAPT College of Engineering Peking University Beijing100871 China AI for Science Institute Beijing100080 China Center for Machine Learning Research Peking University Beijing100871 China School of Mathematical Sciences Peking University Beijing100871 China
The discovery of novel high-temperature superconductor materials holds transformative potential for a wide array of technological applications. However, the combinatorially vast chemical and configurational search spa... 详细信息
来源: 评论
ABACUS: An Electronic Structure Analysis Package for the AI Era
arXiv
收藏 引用
arXiv 2025年
作者: Zhou, Weiqing Zheng, Daye Liu, Qianrui Lu, Denghui Liu, Yu Lin, Peize Huang, Yike Peng, Xingliang Bao, Jie J. Cai, Chun Jin, Zuxin Wu, Jing Zhang, Haochong Jin, Gan Ji, Yuyang Shen, Zhenxiong Liu, Xiaohui Sun, Liang Cao, Yu Sun, Menglin Liu, Jianchuan Chen, Tao Liu, Renxi Li, Yuanbo Han, Haozhi Liang, Xinyuan Bao, Taoni Chen, Nuo Ren, Hongxu Zhang, Xiaoyang Liu, Zhaoqing Fu, Yiwei Liu, Maochang Li, Zhuoyuan Wen, Tongqi Tang, Zechen Xu, Yong Duan, Wenhui Wang, Xiaoyang Gu, Qiangqiang Dai, Fu-Zhi Zheng, Qijing Zhao, Jin Zhang, Yuzhi Ou, Qi Jiang, Hong Liu, Shi Xu, Ben Xu, Shenzhen Ren, Xinguo He, Lixin Zhang, Linfeng Chen, Mohan AI for Science Institute Beijing100080 China HEDPS CAPT School of Physics College of Engineering Peking University Beijing100871 China College of Engineering Peking University Beijing100871 China Institute of Artificial Intelligence Hefei Comprehensive National Science Center Hefei230026 China Key Laboratory of Quantum Information University of Science and Technology of China Hefei230026 China Supercomputing Center University of Science and Technology of China Anhui Hefei230026 China Institute of Physics Chinese Academy of Sciences Beijing100190 China School of Materials Science and Engineering Peking University Beijing100871 China School of Electrical Engineering and Electronic Information Xihua University Chengdu610039 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China College of Chemistry and Molecular Engineering Peking University Beijing100871 China International Research Center for Renewable Energy State Key Laboratory of Multiphase Flow Xi’an Jiaotong University Shaanxi Xi’an710049 China Suzhou Academy of Xi’an Jiaotong University Jiangsu Suzhou215123 China Center for Structural Materials Department of Mechanical Engineering The University of Hong Kong Hong Kong The University of Hong Kong Shenzhen China State Key Laboratory of Low Dimensional Quantum Physics Department of Physics Tsinghua University Beijing100084 China Frontier Science Center for Quantum Information Beijing China Saitama Wako351-0198 Japan Institute for Advanced Study Tsinghua University Beijing100084 China Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Fenghao East Road 2 Beijing100094 China School of Artificial Intelligence and Data Science University of Science and Technology of China Hefei230026 China School of Materials Science and Engineering University of Science and Technology Beijing Beijing100083 China Department of Physics University of Science and
ABACUS (Atomic-orbital Based Ab-initio Computation at USTC) is an open-source software for first-principles electronic structure calculations and molecular dynamics simulations. It mainly features density functional t... 详细信息
来源: 评论
Capturing Doublet Intermediate Emitters by Chemically Crosslinking Confinement towards Spatiotemporal Encryption
收藏 引用
Angewandte Chemie 2023年 第1期136卷
作者: Haomin Li Dr. Huanyu Lei Dr. Shudeng Ma Dr. Tianfu Song Prof. Dr. Yan Li Prof. Dr. Haifeng Yu School of Materials Science and Engineering Beijing Advanced Innovation Centre for Biomedical Engineering Beihang University Beijing 100191 China School of Materials Science and Engineering Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 China Contribution: Conceptualization (lead) Data curation (lead) Software (lead) Writing - original draft (lead) South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510641 China Contribution: Data curation (supporting) Software (supporting) Contribution: Conceptualization (supporting) Data curation (supporting) Formal analysis (supporting) Contribution: Conceptualization (supporting) Formal analysis (supporting) Writing - review & editing (supporting) Contribution: Supervision (equal) Writing - review & editing (equal)
Photoluminescence is one of the most meticulous ways to manipulate light energy. Typical photoluminescent emitters are mostly stable substances with a pure photophysical process of spontaneous photon-emission from the... 详细信息
来源: 评论
The Incoming Influenza Season—China,the United Kingdom,and the United States,2021–2022
收藏 引用
China CDC weekly 2021年 第49期3卷 1039-1045页
作者: Shasha Han Ting Zhang Yan Lyu Shengjie Lai Peixi Dai Jiandong Zheng Weizhong Yang Xiaohua Zhou Luzhao Feng Beijing International Center for Mathematical Research Peking UniversityBeijingChina Harvard Medical School Harvard UniversityBostonMAUSA School of Population Medicine and Public Health Chinese Academy of Medical Sciences&Peking Union Medical CollegeBeijingChina Academy for Advanced Interdisciplinary Studies Peking UniversityBeijingChina WorldPop School of Geography and Environmental ScienceUniversity of SouthamptonSouthamptonUK Division for Infectious Diseases Chinese Center for Disease Control and PreventionBeijingChina Department of Biostatistics School of Public HealthPeking UniversityBeijingChina National Engineering Laboratory of Big Data Analysis and Applied Technology Peking UniversityBeijingChina.
Introduction:Seasonal influenza activity has declined globally since the widespread of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)*** has been scarce information to understand the future dynamics of in... 详细信息
来源: 评论
Non-Equilibrium Time-Relaxation Kinetic Model for Compressible Turbulence Modeling
SSRN
收藏 引用
SSRN 2022年
作者: Cao, Guiyu Pan, Liang Xu, Kun Wan, Minping Chen, Shiyi Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology Guangdong Shenzhen518055 China Department of Mathematics Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong Laboratory of Mathematics and Complex Systems School of Mathematical Sciences Beijing Normal University Beijing100875 China Shenzhen Research Institute Hong Kong University of Science and Technology Guangdong Shenzhen518057 China Department of Mechanics and Aerospace Engineering Southern University of Science and Technology Guangdong Shenzhen518055 China Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications Southern University of Science and Technology Guangdong Shenzhen518055 China
For the first time, the non-equilibrium time-relaxation kinetic model (NTRKM) is proposed for compressible turbulence modeling on unresolved grids. Within the non-equilibrium time-relaxation framework, NTRKM is extend... 详细信息
来源: 评论
Convolutional Neural Network Pruning: A Survey
Convolutional Neural Network Pruning: A Survey
收藏 引用
第三十九届中国控制会议
作者: Sheng Xu Anran Huang Lei Chen Baochang Zhang School of Automatic Science and Eletrical Engineering Beihang University State Key Laboratory of Software Development Environment Beijing Advanced Innovation Center for Big Data and Brain Computing
Deep convolutional neural networks have enabled remarkable progress over the last years on a variety of visual tasks,such as image recognition, speech recognition, and machine translation. These tasks contribute many ... 详细信息
来源: 评论
Stabilization of continuous-time Markov/semi-Markov jump linear systems via finite data-rate feedback
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Jingyi Feng, Jianwen Xu, Chen Wu, Xiaoqun Lü, Jinhu College of Mathematics and Statistics Shenzhen University Shenzhen518060 China School of Mathematics and Statistics Hubei Key Laboratory of Computational Science Wuhan University Wuhan China State Key Laboratory of Software Development Environment School of Automation Science and Electrical Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China
This paper investigates almost sure exponential stabilization of continuous-time Markov jump linear systems (MJLSs) under communication data-rate constraints by introducing sampling and quantization into the feedback ... 详细信息
来源: 评论
Intragenomic mutational heterogeneity: structural and functional insights from gene evolution
收藏 引用
Trends in Genetics 2025年
作者: Hara, Yuichiro Kuraku, Shigehiro Department of Data Science Kitasato University School of Frontier Engineering Sagamihara Japan Research Center for Genome & Medical Sciences Tokyo Metropolitan Institute of Medical Science Tokyo Japan Molecular Life History Laboratory National Institute of Genetics Mishima Japan Department of Genetics SOKENDAI (Graduate University for Advanced Studies) Mishima Japan
Variation of mutation rates between species has been documented over decades, but the variation between different regions of a genome has been less often discussed. Recent studies using high-quality sequence data have... 详细信息
来源: 评论
Signal approximation with Pascal’s triangle and sampling
Signal approximation with Pascal’s triangle and sampling
收藏 引用
第32届中国控制与决策会议
作者: Lei Chen Xinghuo Yu Jinhu Lü School of Automation Science and Electrical Engineering State Key Laboratory of Software Development EnvironmentBeijing Advanced Innovation Center for Big Data and Brain ComputingBeihang University School of Engineering RMIT University
This brief explores the approximation properties of a unique basis expansion based on Pascal’s triangle,which realizes a sampled-data driven approach between a continuous-time signal and its discrete-time *** roles o... 详细信息
来源: 评论
Incorporating Multiple Features to Predict Bug Fixing Time with Neural Networks
Incorporating Multiple Features to Predict Bug Fixing Time w...
收藏 引用
International Conference on software Maintenance (ICSM)
作者: Wei Yuan Yuan Xiong Hailong Sun Xudong Liu SKLSDE Lab School of Computer Science and Engineering Beihang University Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing Beijing China State Key Laboratory of Virtual Reality Technology and Systems Beihang University Beijing China SKLSDE Lab School of Software Beihang University Beijing China
Debugging is a well-known time-consuming task, and knowing how long it would take to resolve bugs is of great importance for allocating the limited resources in a software development team. However, it is challenging ...
来源: 评论