On basis of the similitude principles, the conception of virtual simulative component and the auxiliary value of welding residual stress, which is deduced by the welding conduction theory, the relation of the welding ...
详细信息
On basis of the similitude principles, the conception of virtual simulative component and the auxiliary value of welding residual stress, which is deduced by the welding conduction theory, the relation of the welding residual stress between the simulative component and the practical component was attained. In order to verify the correctness of the relation, the investigation was done from the view of the welding experiment and the numerical simulation about the simulative component and the practical component. The results show that the distribution of welding residual stress of the simulative component is the same as that of the practical component. The ratio of welding residual stress attained by the experiment or the simulation method between the practical runner and the simulative component was compared with the ratio obtained by the similitude principles. Moreover, the error is less than 10%. This provides a new idea to predict the welding stress distribution of large practical structure by the contractible physical model, which is important for the welding experiment and the numerical simulation.
Dense Nb/Nb5Si3 composites were fabricated via spark plasma sintering technology using Nb, Si, and Al elemental powders as raw materials. The microstructttres of the synthesised composites were analyzed through scanni...
详细信息
Dense Nb/Nb5Si3 composites were fabricated via spark plasma sintering technology using Nb, Si, and Al elemental powders as raw materials. The microstructttres of the synthesised composites were analyzed through scanning electron microscopy, X-ray diffraction, and electron probe microanalysis. The results show that the composites consisted of residual Nb particle phase and Nb5Si3 phase. The microstructure of the Nb/ Nb5Si3 in situ composites was evidently affected by Al addition, which prompted the formation of the Al3Nb10Si3 phase. In addition, the Rockwell hardness of the composites decreased with the increase in AI additions. The Rockwell hardness of Nb-20Si is 60HRC, which decreased to approximately 52.7 HRC when the Al content increased to 15 at%. The oxidation resistance of the Nb/NbsSi3 in situ composites significantly improved with the increase in Al addition.
Device modeling has been carried out to investigate the effects of defect states on the performance of ideal CulnGaSe2 (CIGS) thin film solar cells theoretically. The varieties of defect states (location in the ban...
详细信息
Device modeling has been carried out to investigate the effects of defect states on the performance of ideal CulnGaSe2 (CIGS) thin film solar cells theoretically. The varieties of defect states (location in the band gap and densities) in absorption layer CIGS and in buffer layer CdS were examined. The performance parameters: open-circuit voltage, short-circuit current, fill factor, and photoelectric conversion efficiency for different defect states were quantitatively analyzed. We found that defect states always harm the performance of CIGS solar cells, but when defect state density is less than 10 14 cm-3 in CIGS or less than 10 18 cm-3 in CdS, defect states have little effect on the performances. When defect states are located in the middle of the band gap, they are more harmful. The effects of temperature and thickness are also considered. We found that CIGS solar cells have optimal performance at about 170 K and 2 μm of CIGS is enough for solar light absorption.
To optimize the investment casting process when producing high quality large-size titanium alloy thin-wall components is a time-consuming job due to the complicated metallurgical process. Numerical simulation is a hig...
详细信息
To optimize the investment casting process when producing high quality large-size titanium alloy thin-wall components is a time-consuming job due to the complicated metallurgical process. Numerical simulation is a high-efficiency method compared with trial and error, and therefore is introduced to the investment casting process optimization to shorten the new product development cycle and reduce the production cost. In this study, weakly compressible model(WCM) and ununiformed finite difference mesh(UFDM) was developed to reduce the memory consumption and ensure the simulation efficiency. The precision of the WCM and UFDM were verified by numerical simulation of cavity heat convection in a square cavity and hydraulics simulation of centrifugal filling in a transparent cavity. The numerical simulation of the investment casting process of a titanium alloy thin-wall casing under different process conditions was accomplished using a self-developed software, and the distribution characteristics of potential shrinkage defects were predicted. It was found that the predicted defects in the titanium alloy casing matched well with the actual X-ray experimental results. For the components investigated in this paper, more numerical simulation results show that the centrifugal casting process with respect to gravity casting had no obvious improvements in the concentrated shrinkage defects, and the gravity casting process can be more reasonable from the engineering point of view.
Mg-Al-Ni alloys were prepared by powder metallurgy, and their microstructure and elevated temperature mechanical properties were investigated. Results indicate that, in addition to α-Mg matrix, both coarse Al;Ni;part...
详细信息
Mg-Al-Ni alloys were prepared by powder metallurgy, and their microstructure and elevated temperature mechanical properties were investigated. Results indicate that, in addition to α-Mg matrix, both coarse Al;Ni;particles and fine Al Ni nano-particles exist in the Mg-Al-Ni alloys. The strength at 150?C is improved with the increase in Ni content. Mg-18.3Al-8Ni alloy possesses a compressive strength of234.7 MPa and a yield strength of 146.5 MPa. Plasticity is also improved with a low concentration of Ni. Mg-11.3Al-2Ni alloy possesses a compression ratio of 17.3%. The phases of Al;Ni;and Al Ni in the alloys block the movements of grain boundaries and dislocations during the deformation at elevated temperature. The existence of Al Ni phase provides a non-basal slip system, leading to the improvement in plasticity. Finally, the formation mechanism of Al-Ni phases in the process is discussed with thermodynamics and kinetics.
Concept of duster banding heat source model is put forward for the problem of overmany increment steps in the process of numerical simulation of large welding structures, and expression of cluster banding heat source ...
详细信息
Concept of duster banding heat source model is put forward for the problem of overmany increment steps in the process of numerical simulation of large welding structures, and expression of cluster banding heat source model is deduced based on energy conservation law. Because the expression of cluster banding heat source model deduced is suitable for random weld width, quantitative analysis of welding stress field for large welding structures which have regular welds can be made quickly.
Non-linear finite element code MSC. Marc was utilized to analysis the field of stress of the Al2O3 joints brazed with composite filler materials. The properties of the filler materials were defined by using the mixing...
详细信息
Non-linear finite element code MSC. Marc was utilized to analysis the field of stress of the Al2O3 joints brazed with composite filler materials. The properties of the filler materials were defined by using the mixing law, method of Mori-Tanaka and theory of Eshelby to ensure the accuracy and reliability of results of finite element method (FEM). The results show stress in brazed beam is higher than that in base material. The maximal stress can be found in the interface of joint. And the experimental results show that the shear strength of joints increases from 93.75 MPa ( Al2O3p Ovol. % ) to 135.32 MPa ( Al2O3p 15vol. % ) when composition of titanium is 3wt% in the filler metal.
Heat transfer is the foundation of freezing colloidal suspensions and a key factor for the interface ***,how the thermal conductivity of particles affects freezing microstructural evolution remains *** in this work,a ...
详细信息
Heat transfer is the foundation of freezing colloidal suspensions and a key factor for the interface ***,how the thermal conductivity of particles affects freezing microstructural evolution remains *** in this work,a mathematical model is built up to investigate thermal interactions among a growing particle layer,pulling speeds,and the freezing interface under a thermal *** are conducted to confirm the tendency predictions of the *** the increase of pulling speeds,the drifting distance of the freezing interface increases and the time to finish drifting *** the thermal conductivity of particles(k_(p))is smaller than that of the surrounding(kw),the freezing interface tends to go forward to the warm ***,the freezing interface tends to go back to the cold side when the thermal conductivity of particles is larger than that of the surrounding(α=k_(p)/k_(w)>1).It originates from the shape of the local freezing interface:convex(α<1)or concave(α>1).These morphological changes in the local interface modify the premelting drag force F_(f).Whenα<1,F_(f)decreases and the freezing morphology tends to be the frozen ***α>1,F_(f)increases and the freezing morphologies tend to be ice *** understandings of how the thermal conductivity of particles affect microstructural evolution may optimize the production of freeze-casting materials and their structural-functional properties.
With miniaturization and complication of the shape of electronic devices in recent years,powder injection molding(PIM)seems to be a suitable process for fabricating the higher performance soft magnetic *** this paper,...
详细信息
With miniaturization and complication of the shape of electronic devices in recent years,powder injection molding(PIM)seems to be a suitable process for fabricating the higher performance soft magnetic *** this paper,high quality Fe-50Ni soft magnetic alloy was fabricated by PIM with carbonyl iron and nickel,and the effect of sintering process on its microstructure and magnetic properties were *** mechanical and magnetic properties can be obviously improved by increasing the sintering temperature or using the hydrogen atmosphere instead of high vacuum,which causes by the increase of grain size and the *** the optimum sintering conditions,the PIM Fe-50Ni soft magnetic alloy with high properties are obtained,whose relative density,tensile strength,B_(m),H_(c),μ_(m)are 97%,465 MPa,1.52 T,16.62 A·m^(-1),42.5 mH·m^(-1),respectively.
The hole transport material (HTM) plays an extremely important role to determine the power conversion efficiency (PCE) and the stability of perovskite solar cells (PSCs). Herein, we report an effective strategy to imp...
详细信息
The hole transport material (HTM) plays an extremely important role to determine the power conversion efficiency (PCE) and the stability of perovskite solar cells (PSCs). Herein, we report an effective strategy to improve the performance of HTMs by introducing −CF_(3) groups via the rational decorative mode. Upon direct attachment or nonconjugated alkoxyl bridging of −CF_(3) groups on the terminal diphenylamines, the resulting molecular HTMs, i.e., 2,7-BCzA4CF_(3) and 2,7-BCzA4OCCF_(3), show distinct properties. Compared with 2,7-BCzA4CF_(3), the nonconjugated alkoxyl bridging −CF_(3) group-based 2,7-BCzA4OCCF_(3) exhibits better thermal stability, hydrophobicity, and a dramatically upgraded hole mobility by 135.7-fold of magnitude to 1.71 × 10^(−4) cm^(2) V^(−1) S^(−1). The PSCs with 2,7-BCzA4OCCF_(3) as HTM exhibit an PCE of up to 20.53% and excellent long-term stability, maintaining 92.57% of their performance for 30 days in air with humidity of 30% without encapsulation. This work provides beneficial guidelines for the design of new HTMs for efficient and stable PSCs.
暂无评论