咨询与建议

限定检索结果

文献类型

  • 9 篇 会议
  • 6 篇 期刊文献

馆藏范围

  • 15 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 9 篇 工学
    • 4 篇 计算机科学与技术...
    • 4 篇 软件工程
    • 3 篇 化学工程与技术
    • 2 篇 光学工程
    • 2 篇 信息与通信工程
    • 2 篇 生物工程
    • 1 篇 冶金工程
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 测绘科学与技术
    • 1 篇 生物医学工程(可授...
  • 3 篇 理学
    • 2 篇 物理学
    • 2 篇 生物学
    • 1 篇 数学
    • 1 篇 化学
    • 1 篇 统计学(可授理学、...
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 药学(可授医学、理...

主题

  • 3 篇 security
  • 3 篇 wireless network...
  • 2 篇 deep learning
  • 2 篇 quality of servi...
  • 2 篇 computational mo...
  • 2 篇 real-time system...
  • 2 篇 testing
  • 2 篇 deep reinforceme...
  • 1 篇 internet of thin...
  • 1 篇 tuning
  • 1 篇 reliability
  • 1 篇 hyperparameter o...
  • 1 篇 content based re...
  • 1 篇 pattern classifi...
  • 1 篇 magnetic resonan...
  • 1 篇 carbon dioxide
  • 1 篇 signal to noise ...
  • 1 篇 throughput
  • 1 篇 anomaly detectio...
  • 1 篇 electrolyte desi...

机构

  • 3 篇 department of el...
  • 3 篇 ai data & visual...
  • 2 篇 idaho state univ...
  • 2 篇 department of qu...
  • 2 篇 department of co...
  • 2 篇 idaho state univ...
  • 1 篇 department of da...
  • 1 篇 ai data and visu...
  • 1 篇 south australia ...
  • 1 篇 department of bi...
  • 1 篇 department of co...
  • 1 篇 department artif...
  • 1 篇 contribution: da...
  • 1 篇 brown university...
  • 1 篇 medical faculty ...
  • 1 篇 reutlingen unive...
  • 1 篇 department of ra...
  • 1 篇 department of ra...
  • 1 篇 american college...
  • 1 篇 department of co...

作者

  • 3 篇 cameron j. krome
  • 3 篇 fouda mostafa m.
  • 3 篇 mostafa m. fouda
  • 3 篇 krome cameron j.
  • 2 篇 olaveson israel ...
  • 2 篇 thomas j. kopcho
  • 2 篇 israel g. olaves...
  • 2 篇 kopcho thomas j.
  • 1 篇 ujjwal baid
  • 1 篇 derrick murcia
  • 1 篇 mehrtash harandi
  • 1 篇 francis loayza
  • 1 篇 jason martin
  • 1 篇 nai-yu pan
  • 1 篇 chopra agamdeep
  • 1 篇 madhura ingalhal...
  • 1 篇 mojtaba jafarita...
  • 1 篇 wojciech malara
  • 1 篇 johannes c. paet...
  • 1 篇 ramy a. zeineldi...

语言

  • 13 篇 英文
  • 2 篇 其他
检索条件"机构=Ai Data and Visualization"
15 条 记 录,以下是1-10 订阅
排序:
Altering 5G Network Parameters Using Deep Reinforcement Learning to Optimize QoS and Security  2
Altering 5G Network Parameters Using Deep Reinforcement Lear...
收藏 引用
2nd IEEE Virtual Conference on Communications, VCC 2024
作者: Kaddour, Hamza Olaveson, Israel G. Krome, Cameron J. Fouda, Mostafa M. Idaho State University Department of Electrical and Computer Engineering PocatelloID83209 United States Idaho FallsID83401 United States Ai Data and Visualization Ai Data and Visualization Idaho FallsID83415 United States
As 5G networks rapidly expand to support higher data rates, lower latency, and increased device density, the associated security risks are also growing. That is why the deployment of 5G networks introduces significant... 详细信息
来源: 评论
Affective visualization Design: Leveraging the Emotional Impact of data
arXiv
收藏 引用
arXiv 2023年
作者: Lan, Xingyu Wu, Yanqiu Cao, Nan The Research Group of Computational and AI Communication Institute for Global Communications and Integrated Media China Intelligent Big Data Visualization Lab Tongji University China
In recent years, more and more researchers have reflected on the undervaluation of emotion in data visualization and highlighted the importance of considering human emotion in visualization design. Meanwhile, an incre... 详细信息
来源: 评论
YOLO for Radio Frequency Signal Classification
YOLO for Radio Frequency Signal Classification
收藏 引用
IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN
作者: T.Quach Anna Randall D. Reese AI Data & Visualization Idaho National Laboratory Idaho Falls ID USA
Radio frequency signal classification plays a pivotal role in various applications, including spectrum management, wireless security, and cognitive radio. Extant signal classification methods require significant data ... 详细信息
来源: 评论
Altering 5G Network Parameters Using Deep Reinforcement Learning to Optimize QoS and Security
Altering 5G Network Parameters Using Deep Reinforcement Lear...
收藏 引用
Virtual Conference on Communications (VCC), IEEE
作者: Hamza Kaddour Israel G. Olaveson Cameron J. Krome Mostafa M. Fouda Department of Electrical and Computer Engineering Idaho State University Pocatello ID USA Center for Advanced Energy Studies (CAES) Idaho Falls ID USA AI Data & Visualization AI Data & Visualization Idaho Falls ID USA
As 5G networks rapidly expand to support higher data rates, lower latency, and increased device density, the associated security risks are also growing. That is why the deployment of 5G networks introduces significant... 详细信息
来源: 评论
Exploiting Multi-Domain Features for Detection of Unclassified Electromagnetic Signals
Exploiting Multi-Domain Features for Detection of Unclassifi...
收藏 引用
MILCOM, Military Communications Conference
作者: Xue Wei Dola Saha Anna Quach Department of Electrical and Computer Engineering University at Albany SUNY AI Data and Visualization Idaho National Laboratory
Deep Learning based classification techniques have shown excellent performance in static environments, where the training and testing samples are drawn from the same distribution. However, real world scenarios often p... 详细信息
来源: 评论
Analyzing the Impact of Security Measures on Wi-Fi Quality of Service  2
Analyzing the Impact of Security Measures on Wi-Fi Quality o...
收藏 引用
2nd International Conference on Artificial Intelligence, Blockchain, and Internet of Things, aiBThings 2024
作者: Kopcho, Thomas J. Fouda, Mostafa M. Krome, Cameron J. Quach, Anna T. Olaveson, Israel G. Idaho State University Department of Computer Science PocatelloID United States Idaho State University Department of Electrical and Computer Engineering PocatelloID United States Ai Data & Visualization Idaho National Laboratory Idaho FallsID United States
This study examines the relationship between Quality of Service (QoS) and security in Wi-Fi networks. Using a detailed dataset consisting of QoS metrics of file transfers under various security configurations, we anal... 详细信息
来源: 评论
A Lightweight ai Model for Anomaly Detection in Wireless Networks  2
A Lightweight AI Model for Anomaly Detection in Wireless Net...
收藏 引用
2nd International Conference on Artificial Intelligence, Blockchain, and Internet of Things, aiBThings 2024
作者: Kopcho, Thomas J. Fouda, Mostafa M. Krome, Cameron J. Idaho State University Department of Computer Science PocatelloID United States Idaho State University Department of Electrical and Computer Engineering PocatelloID United States Idaho National Laboratory Ai Data & Visualization Idaho FallsID United States
Detecting network anomalies is critical for wireless network security and reliability. Traditional ai methods often require substantial computational resources, particularly when deployed on cloud servers, leading to ... 详细信息
来源: 评论
Analyzing the Impact of Security Measures on Wi-Fi Quality of Service
Analyzing the Impact of Security Measures on Wi-Fi Quality o...
收藏 引用
Artificial Intelligence, Blockchain, and Internet of Things (aiBThings), IEEE International Conference on
作者: Thomas J. Kopcho Mostafa M. Fouda Cameron J. Krome Anna T. Quach Israel G. Olaveson Department of Computer Science Idaho State University Pocatello ID Department of Electrical and Computer Engineering Idaho State University Pocatello ID AI Data & Visualization Idaho National Laboratory Idaho Falls ID
This study examines the relationship between Quality of Service (QoS) and security in Wi-Fi networks. Using a detailed dataset consisting of QoS metrics of file transfers under various security configurations, we anal... 详细信息
来源: 评论
A Lightweight ai Model for Anomaly Detection in Wireless Networks
A Lightweight AI Model for Anomaly Detection in Wireless Net...
收藏 引用
Artificial Intelligence, Blockchain, and Internet of Things (aiBThings), IEEE International Conference on
作者: Thomas J. Kopcho Mostafa M. Fouda Cameron J. Krome Department of Computer Science Idaho State University Pocatello ID Department of Electrical and Computer Engineering Idaho State University Pocatello ID AI Data & Visualization Idaho National Laboratory Idaho Falls ID
Detecting network anomalies is critical for wireless network security and reliability. Traditional ai methods often require substantial computational resources, particularly when deployed on cloud servers, leading to ... 详细信息
来源: 评论
A generative artificial intelligence framework based on a molecular diffusion model for the design of metal–organic frameworks for carbon capture
arXiv
收藏 引用
arXiv 2023年
作者: Park, Hyun Yan, Xiaoli Zhu, Ruijie Huerta, Eliu A. Chaudhuri, Santanu Cooper, Donny Foster, Ian Tajkhorshid, Emad Data Science and Learning Division Argonne National Laboratory LemontIL60439 United States Theoretical and Computational Biophysics Group NIH Resource Center for Macromolecular Modeling and Visualization Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign UrbanaIL61801 United States Center for Biophysics and Quantitative Biology University of Illinois at Urbana-Champaign UrbanaIL61801 United States Multiscale Materials and Manufacturing Lab University of Illinois Chicago ChicagoIL60607 United States Department of Materials Science and Engineering Northwestern University EvanstonIL60208 United States Department of Computer Science University of Chicago ChicagoIL60637 United States Department of Physics University of Illinois at Urbana-Champaign UrbanaIL61801 United States Computational Science and Engineering Data Science and AI Department TotalEnergies EP Research & Technology USA LLC HoustonTX77002 United States Department of Biochemistry University of Illinois at Urbana-Champaign UrbanaIL61801 United States
Metal–organic frameworks (MOFs) exhibit great promise for CO2 capture. However, finding the best performing materials poses computational and experimental grand challenges in view of the vast chemical space of potent... 详细信息
来源: 评论