咨询与建议

限定检索结果

文献类型

  • 26 篇 期刊文献
  • 24 篇 会议

馆藏范围

  • 50 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 40 篇 工学
    • 33 篇 计算机科学与技术...
    • 31 篇 软件工程
    • 18 篇 光学工程
    • 18 篇 生物工程
    • 17 篇 生物医学工程(可授...
    • 8 篇 信息与通信工程
    • 4 篇 电气工程
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 控制科学与工程
    • 2 篇 建筑学
    • 2 篇 环境科学与工程(可...
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 化学工程与技术
    • 1 篇 轻工技术与工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 核科学与技术
  • 25 篇 理学
    • 19 篇 生物学
    • 11 篇 物理学
    • 10 篇 数学
    • 5 篇 统计学(可授理学、...
    • 3 篇 化学
  • 10 篇 医学
    • 9 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
    • 1 篇 公共卫生与预防医...
    • 1 篇 特种医学
  • 6 篇 管理学
    • 5 篇 图书情报与档案管...

主题

  • 6 篇 generative adver...
  • 4 篇 deep learning
  • 3 篇 deep neural netw...
  • 3 篇 training
  • 2 篇 object detection
  • 2 篇 magnetic resonan...
  • 2 篇 convolution
  • 2 篇 visualization
  • 2 篇 yolo
  • 2 篇 floods
  • 2 篇 detectors
  • 2 篇 computer vision
  • 2 篇 robustness
  • 1 篇 surveys
  • 1 篇 analysis
  • 1 篇 knowledge engine...
  • 1 篇 segmentation
  • 1 篇 dissection
  • 1 篇 mixed reality
  • 1 篇 evolution

机构

  • 16 篇 computer algorit...
  • 9 篇 partner site ess...
  • 8 篇 university medic...
  • 6 篇 university medic...
  • 6 篇 institute of com...
  • 5 篇 institute of com...
  • 3 篇 image processing...
  • 3 篇 department of or...
  • 3 篇 institute of med...
  • 3 篇 department of ph...
  • 3 篇 department of or...
  • 3 篇 center algoritmi...
  • 2 篇 data science ins...
  • 2 篇 department of co...
  • 2 篇 department of ne...
  • 2 篇 center for machi...
  • 2 篇 working group al...
  • 2 篇 research center ...
  • 2 篇 institute of com...
  • 2 篇 centre for funct...

作者

  • 20 篇 egger jan
  • 10 篇 pepe antonio
  • 10 篇 gsaxner christin...
  • 10 篇 li jianning
  • 10 篇 weinmann andreas
  • 9 篇 kleesiek jens
  • 5 篇 ferreira andré
  • 5 篇 alves victor
  • 4 篇 pomykala kelsey ...
  • 3 篇 downs colleen t.
  • 3 篇 koch tobias
  • 3 篇 andreas weinmann
  • 3 篇 hergenroether el...
  • 3 篇 jens kleesiek
  • 3 篇 jin yuan
  • 3 篇 lenhard tamara r...
  • 3 篇 suessle vanessa
  • 3 篇 märz thomas
  • 3 篇 jan egger
  • 2 篇 rempe moritz

语言

  • 40 篇 英文
  • 10 篇 其他
检索条件"机构=Algorithms for Computer Vision"
50 条 记 录,以下是31-40 订阅
排序:
Deep multi-spectral registration using invariant descriptor learning  25
Deep multi-spectral registration using invariant descriptor ...
收藏 引用
25th IEEE International Conference on Image Processing, ICIP 2018
作者: Ofir, Nati Silberstein, Shai Levi, Hila Rozenbaum, Dani Keller, Yosi Duvdevani Bar, Sharon Elbit Systems Bar-Ilan University Computer Vision and Algorithms Ltd Weizmann Institute Israel
In this work, we propose a deep-learning approach for aligning cross-spectral images. Our approach utilizes a learned descriptor invariant to different spectra. Multi-modal images of the same scene capture different c... 详细信息
来源: 评论
IRIS: Interactive real-time feedback image segmentation with deep learning
IRIS: Interactive real-time feedback image segmentation with...
收藏 引用
Medical Imaging 2020: Biomedical Applications in Molecular, Structural, and Functional Imaging
作者: Pepe, Antonio Schussnig, Richard Li, Jianning Gsaxner, Christina Chen, Xiaojun Fries, Thomas-Peter Egger, Jan Stanford University School of Medicine Department of Radiology 300 Pasteur Dr StanfordCA United States Graz University of Technology Institute of Computer Graphics and Vision Inffeldgasse 16c/II GrazA-8010 Austria Computer Algorithms for Medicine Laboratory GrazA-8010 Austria Graz University of Technology Institute of Structural Analysis Lessingstraße 25/II GrazA-8010 Austria Medical University of Graz Department of Oral and Maxillofacial Surgery Auenbruggerplatz 5/1 GrazA-8036 Austria Shanghai Jiao Tong University School of Mechanical Engineering 800 Dong Chuan Road Shanghai200240 China
Volumetric examinations of the aorta are nowadays of crucial importance for the management of critical pathologies such as aortic dissection, aortic aneurism, and other pathologies, which affect the morphology of the ... 详细信息
来源: 评论
AI-based Aortic Vessel Tree Segmentation for Cardiovascular Diseases Treatment: Status Quo
arXiv
收藏 引用
arXiv 2021年
作者: Jin, Yuan Pepe, Antonio Li, Jianning Gsaxner, Christina Zhao, Fen-Hua Pomykala, Kelsey L. Kleesiek, Jens Frangi, Alejandro F. Egger, Jan Institute of Computer Graphics and Vision Graz University of Technology Inffeldgasse 16 Graz8010 Austria Computer Algorithms for Medicine Laboratory Graz Austria Research Center for Connected Healthcare Big Data ZhejiangLab Zhejiang Hangzhou311121 China Girardetstraße 2 Essen45131 Germany Department of Radiology Affiliated Dongyang Hospital of Wenzhou Medical University Zhejiang Dongyang322100 China Hufelandstraße 55 Essen45147 Germany Partner Site Essen Hufelandstraße 55 Essen45147 Germany School of Computing University of Leeds Leeds United Kingdom School of Medicine University of Leeds Leeds United Kingdom
The aortic vessel tree is composed of the aorta and its branching arteries, and plays a key role in supplying the whole body with blood. Aortic diseases, like aneurysms or dissections, can lead to an aortic rupture, w... 详细信息
来源: 评论
Exploit fully automatic low-level segmented PET data for training high-level deep learning algorithms for the corresponding CT data
arXiv
收藏 引用
arXiv 2019年
作者: Gsaxner, Christina Roth, Peter M. Wallner, Jürgen Egger, Jan Institute for Computer Graphics and Vision Faculty of Computer Science and Biomedical Engineering Graz University of Technology Graz Austria Computer Algorithms for Medicine Laboratory Graz Austria Department of Oral & Maxillofacial Surgery Medical University of Graz Auenbruggerplatz Styria Austria
We present an approach for fully automatic urinary bladder segmentation in CT images with artificial neural networks in this study. Automatic medical image analysis has become an invaluable tool in the different treat... 详细信息
来源: 评论
PET-Train: Automatic Ground Truth Generation from PET Acquisitions for Urinary Bladder Segmentation in CT Images using Deep Learning  11
PET-Train: Automatic Ground Truth Generation from PET Acquis...
收藏 引用
11th Biomedical Engineering International Conference, BMEiCON 2018
作者: Gsaxner, Christina Pfarrkirchner, Birgit Lindner, Lydia Pepe, Antonio Roth, Peter M. Egger, Jan Wallner, Jurgen Inst. of Computer Graphics and Vision Graz University of Technology Graz Austria Department of Maxillofacial Surgery Medical University of Graz Graz Austria Computer Algorithms for Medicine Laboratory Graz Austria
In this contribution, we propose an automatic ground truth generation approach that utilizes Positron Emission Tomography (PET) acquisitions to train neural networks for automatic urinary bladder segmentation in Compu... 详细信息
来源: 评论
REGISTRATION AND FUSION OF MULTI-SPECTRAL IMAGES USING A NOVEL EDGE DESCRIPTOR
REGISTRATION AND FUSION OF MULTI-SPECTRAL IMAGES USING A NOV...
收藏 引用
IEEE International Conference on Image Processing
作者: Nati Ofir Shai Silberstein Dani Rozenbaum Yosi Keller Sharon Duvdevani Bar Elbit Systems Computer Vision and Algorithms Ltd.
In this work we propose a fully end-to-end approach for multi-spectral image registration and fusion. Our fusion method combines images from different spectral channels into a single fused image using approaches for l... 详细信息
来源: 评论
Medical deep learning-A systematic meta-review
arXiv
收藏 引用
arXiv 2020年
作者: Egger, Jan Gsaxner, Christina Pepe, Antonio Pomykala, Kelsey L. Jonske, Frederic Kurz, Manuel Li, Jianning Kleesiek, Jens Institute of Computer Graphics and Vision Faculty of Computer Science and Biomedical Engineering Graz University of Technology Inffeldgasse 16 Styria Graz8010 Austria Department of Oral & Maxillofacial Surgery Medical University of Graz Auenbruggerplatz 5/1 Styria Graz8036 Austria Computer Algorithms for Medicine Laboratory Styria Graz Austria University Medicine Essen Girardetstraße 2 Essen45131 Germany University Medicine Essen Hufelandstraße 55 Essen45147 Germany Partner Site Essen Hufelandstraße 55 Essen45147 Germany
Deep learning has remarkably impacted several different scientific disciplines over the last few years. For example, in image processing and analysis, deep learning algorithms were able to outperform other cutting-edg... 详细信息
来源: 评论
Aortic Vessel Tree Segmentation for Cardiovascular Diseases Treatment: Status Quo
收藏 引用
ACM Computing Surveys 2025年 第9期57卷
作者: Yuan Jin Antonio Pepe Jianning Li Christina Gsaxner Yuxuan Chen Behrus Puladi Fen-hua Zhao Kelsey Pomykala Jens Kleesiek Alejandro Frangi Jan Egger Institute of Computer Graphics and Vision Graz University of Technology Graz Austria Research Centre for Frontier Fundamental Studies Zhejiang Lab Hangzhou China Institute of Computer Graphics and Vision Graz University of Technology Graz Austria Institute for Artificial Intelligence in Medicine Essen University Hospital (AöR) Essen Germany Zhejiang Laboratory of Philosophy and Social Sciences - Laboratory of Intelligent Society and Governance Zhejiang Lab Hangzhou China Institute of Medical Informatics RWTH Aachen University Aachen Germany Wenzhou Medical University Affiliated Dongyang Hospital Dongyang China Cancer Research Center Cologne Essen Essen Germany German Cancer Consortium Heidelberg Germany Christabel Pankhurst Institute The University of Manchester Manchester United Kingdom of Great Britain and Northern Ireland School of Health Sciences The University of Manchester Division of Informatics Imaging and Data Sciences Manchester United Kingdom of Great Britain and Northern Ireland The University of Manchester School of Computer Science Manchester United Kingdom of Great Britain and Northern Ireland Manchester University NHS Foundation Trust Manchester United Kingdom of Great Britain and Northern Ireland Insitute of Artificial Intelligence in Medicine Essen University Hospital (AöR) Essen Germany Computer Algorithms for Medicine Laboratory Graz Austria Cancer Research Center Cologne Essen (CCCE) Essen Germany
The aortic vessel tree, composed of the aorta and its branches, is crucial for blood supply to the body. Aortic diseases, such as aneurysms and dissections, can lead to life-threatening ruptures, often requiring open ... 详细信息
来源: 评论
Deep learning - A first meta-survey of selected reviews across scientific disciplines, their commonalities, challenges and research impact
arXiv
收藏 引用
arXiv 2020年
作者: Egger, Jan Pepe, Antonio Gsaxner, Christina Jin, Yuan Li, Jianning Kern, Roman Institute of Computer Graphics and Vision Faculty of Computer Science and Biomedical Engineering Graz University of Technology Graz Austria Computer Algorithms for Medicine Laboratory Graz Austria Department of Oral and Maxillofacial Surgery Medical University of Graz Graz Austria University Medicine Essen Essen Germany Research Center for Connected Healthcare Big Data Zhejiang Lab Zhejiang Hangzhou China Research Unit Experimental Neurotraumatology Department of Neurosurgery Medical University of Graz Graz Austria Knowledge Discovery Know-Center Graz Austria Institute of Interactive Systems and Data Science Graz University of Technology Graz Austria
Deep learning belongs to the field of artificial intelligence, where machines perform tasks that typically require some kind of human intelligence. Deep learning tries to achieve this by drawing inspiration from the l... 详细信息
来源: 评论
Corrigendum to: GAN-based generation of realistic 3D volumetric data: A systematic review and taxonomy [Medical Image Analysis 93 (2024)]
收藏 引用
Medical image analysis 2024年 96卷 103174页
作者: André Ferreira Jianning Li Kelsey L Pomykala Jens Kleesiek Victor Alves Jan Egger Institute for AI in Medicine (IKIM) University Hospital Essen University Duisburg-Essen Girardetstraße 2 Essen 45131 Germany Center Algoritmi/LASI University of Minho Braga 4710-057 Portugal Computer Algorithms for Medicine Laboratory Graz Austria Department of Oral and Maxillofacial Surgery University Hospital RWTH Aachen 52074 Aachen Germany Institute of Medical Informatics University Hospital RWTH Aachen 52074 Aachen Germany. Electronic address: id10656@alunos.uminho.pt. Cancer Research Center Cologne Essen (CCCE) University Medicine Essen Hufelandstraße 55 Essen 45147 Germany. Computer Algorithms for Medicine Laboratory Graz Austria. Cancer Research Center Cologne Essen (CCCE) University Medicine Essen Hufelandstraße 55 Essen 45147 Germany German Cancer Consortium (DKTK) Partner Site Essen Hufelandstraße 55 Essen 45147 Germany TU Dortmund University Department of Physics Otto-Hahn-Straße 4 44227 Dortmund Germany. Institute for AI in Medicine (IKIM) University Hospital Essen University Duisburg-Essen Girardetstraße 2 Essen 45131 Germany. Institute of Computer Graphics and Vision Graz University of Technology Inffeldgasse 16 Graz 801 Austria.
来源: 评论