咨询与建议

限定检索结果

文献类型

  • 20 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 22 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 18 篇 工学
    • 13 篇 计算机科学与技术...
    • 10 篇 软件工程
    • 4 篇 生物工程
    • 2 篇 光学工程
    • 2 篇 动力工程及工程热...
    • 2 篇 交通运输工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
  • 15 篇 理学
    • 12 篇 数学
    • 4 篇 生物学
    • 3 篇 物理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 4 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 药学(可授医学、理...

主题

  • 3 篇 electroencephalo...
  • 2 篇 deep neural netw...
  • 1 篇 eigenvalues and ...
  • 1 篇 geodesy
  • 1 篇 self-supervised ...
  • 1 篇 cameras
  • 1 篇 sobolev spaces
  • 1 篇 contrastive lear...
  • 1 篇 stiff time-evolu...
  • 1 篇 digital storage
  • 1 篇 implicit method
  • 1 篇 nonlinear equati...
  • 1 篇 image compressio...
  • 1 篇 generalisation e...
  • 1 篇 clustering algor...
  • 1 篇 domain knowledge
  • 1 篇 geometry
  • 1 篇 newton's method

机构

  • 13 篇 algorithms of ma...
  • 8 篇 department of ma...
  • 5 篇 department of ma...
  • 5 篇 shenzhen youjia ...
  • 3 篇 algorithms of ma...
  • 3 篇 college of mathe...
  • 2 篇 center for machi...
  • 2 篇 autonomous drivi...
  • 2 篇 department of ma...
  • 2 篇 shenzhen campus ...
  • 2 篇 state key labora...
  • 1 篇 department of ma...
  • 1 篇 sorbonne univers...
  • 1 篇 department of ma...
  • 1 篇 machine learning...
  • 1 篇 school of mathem...
  • 1 篇 machine learning...
  • 1 篇 univ oxford math...
  • 1 篇 sorbonne univ la...
  • 1 篇 department of ma...

作者

  • 16 篇 xiang yang
  • 6 篇 lan yuan
  • 5 篇 yang yahong
  • 5 篇 chen chuqi
  • 4 篇 zhang luchan
  • 3 篇 wang bingxin
  • 3 篇 liu guoqing
  • 3 篇 wu yue
  • 3 篇 fu xiaowen
  • 3 篇 jin tianyu
  • 2 篇 sun jie
  • 2 篇 bayer justin
  • 2 篇 yang xiang
  • 2 篇 guo xinzhou
  • 2 篇 klushyn alexej
  • 2 篇 schratz katharin...
  • 2 篇 hao wenrui
  • 2 篇 yang haizhao
  • 2 篇 maierhofer georg
  • 2 篇 van der smagt pa...

语言

  • 21 篇 英文
  • 1 篇 其他
检索条件"机构=Algorithms of Machine Learning and Autonomous Driving Research Lab"
22 条 记 录,以下是1-10 订阅
排序:
A fast neural hybrid Newton solver adapted to implicit methods for nonlinear dynamics
收藏 引用
JOURNAL OF COMPUTATIONAL PHYSICS 2025年 529卷
作者: Jin, Tianyu Maierhofer, Georg Schratz, Katharina Xiang, Yang Hong Kong Univ Sci & Technol Dept Math Clear Water Bay Hong Kong Peoples R China Univ Oxford Math Inst Oxford England Sorbonne Univ Lab Jacques Louis Lions UMR 7598 Paris France HKUST Shenzhen Hong Kong Collaborat Innovat Res In Algorithms Machine Learning & Autonomous Driving R Shenzhen Peoples R China
The use of implicit time-stepping schemes for the numerical approximation of solutions to stiff nonlinear time-evolution equations brings well-known advantages including, typically, better stability behaviour and corr... 详细信息
来源: 评论
Stability Analysis Framework for Particle-based Distance GANs with Wasserstein Gradient Flow
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Chuqi Wu, Yue Xiang, Yang Department of Mathematics Hong Kong University of Science and Technology Clear Water Bay Hong Kong Algorithms of Machine Learning and Autonomous Driving Research Lab HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute Futian Shenzhen China
In this paper, we investigate the training process of generative networks that use a type of probability density distance named particle-based distance as the objective function, e.g. MMD GAN, Cramér GAN, EIEG GA... 详细信息
来源: 评论
Learn Sharp Interface Solution by Homotopy Dynamics
arXiv
收藏 引用
arXiv 2025年
作者: Chen, Chuqi Yang, Yahong Xiang, Yang Hao, Wenrui Department of Mathematics The Hong Kong University of Science and Technology Clear Water Bay Hong Kong Department of Mathematics The Pennsylvania State University State CollegePA United States Algorithms of Machine Learning and Autonomous Driving Research Lab HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute Futian Shenzhen China
Solving partial differential equations (PDEs) using neural networks has become a central focus in scientific machine learning. Training neural networks for sharp interface problems is particularly challenging due to c... 详细信息
来源: 评论
A fast neural hybrid Newton solver adapted to implicit methods for nonlinear dynamics
arXiv
收藏 引用
arXiv 2024年
作者: Jin, Tianyu Maierhofer, Georg Schratz, Katharina Xiang, Yang Department of Mathematics The Hong Kong University of Science and Technology Clear Water Bay Hong Kong Mathematical Institute University of Oxford United Kingdom Sorbonne Université France Algorithms of Machine Learning and Autonomous Driving Research Lab HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute Futian Shenzhen China
The use of implicit time-stepping schemes for the numerical approximation of solutions to stiff nonlinear time-evolution equations brings well-known advantages including, typically, better stability behaviour and corr... 详细信息
来源: 评论
Automatic Differentiation is Essential in Training Neural Networks for Solving Differential Equations
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Chuqi Yang, Yahong Xiang, Yang Hao, Wenrui Department of Mathematics The Hong Kong University of Science and Technology Clear Water Bay Hong Kong Hong Kong Department of Mathematics The Pennsylvania State University United States Algorithms of Machine Learning and Autonomous Driving Research Lab HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute Shenzhen Futian China
Neural network-based approaches have recently shown significant promise in solving partial differential equations (PDEs) in science and engineering, especially in scenarios featuring complex domains or incorporation o...
来源: 评论
Differentially Private Multimodal Laplacian Dropout (DP-MLD) for EEG Representative learning
arXiv
收藏 引用
arXiv 2024年
作者: Fu, Xiaowen Wang, Bingxin Guo, Xinzhou Liu, Guoqing Xiang, Yang Department of Mathematics The Hong Kong University of Science and Technology Clear Water Bay Hong Kong Shenzhen Youjia Innov Tech Co. Ltd. Shenzhen China Algorithms of Machine Learning and Autonomous Driving Research Lab HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute Futian Shenzhen China
Recently, multimodal electroencephalogram (EEG) learning has shown great promise in disease detection. At the same time, ensuring privacy in clinical studies has become increasingly crucial due to legal and ethical co... 详细信息
来源: 评论
Differentially Private Multimodal Laplacian Dropout (Dp-Mld) for Eeg Representative learning
SSRN
收藏 引用
SSRN 2024年
作者: Fu, Xiaowen Wang, Bingxin Guo, Xinzhou Liu, Guoqing Xiang, Yang Department of Mathematics The Hong Kong University of Science and Technology Hong Kong Shenzhen Youjia Innov Tech Co. Ltd. Shenzhen China Algorithms of Machine Learning and Autonomous Driving Research Lab HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute Shenzhen China Peng Cheng Laboratory China
Recently, multimodal electroencephalogram (EEG) learning has shown great promise in disease detection. At the same time, ensuring privacy in clinical studies has become increasingly crucial due to legal and ethical co... 详细信息
来源: 评论
ElasticLaneNet: An Efficient Geometry-Flexible Approach for Lane Detection
arXiv
收藏 引用
arXiv 2023年
作者: Feng, Yaxin Lan, Yuan Zhang, Luchan Xiang, Yang Department of Mathematics Hong Kong University of Science and Technology Clear Water Bay Hong Kong Algorithms of Machine Learning and Autonomous Driving Research Lab HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute Futian Shenzhen China College of Mathematics and Statistics Shenzhen University Shenzhen518060 China
The task of lane detection involves identifying the boundaries of driving areas in real-time. Recognizing lanes with variable and complex geometric structures remains a challenge. In this paper, we explore a novel and... 详细信息
来源: 评论
Energy stable neural networks for gradient flow equations
arXiv
收藏 引用
arXiv 2023年
作者: Wu, Yue Jin, Tianyu Chen, Chuqi Fan, Ganghua Lan, Yuan Zhang, Luchan Xiang, Yang Department of Mathematics The Hong Kong University of Science and Technology Clear Water Bay Hong Kong Algorithms of Machine Learning and Autonomous Driving Research Lab HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute Futian Shenzhen China School of Mathematical Sciences Shenzhen University Shenzhen518060 China
We propose an energy stable network (EStable-Net) for solving gradient flow equations. The EStable-Net enables decreasing of a discrete energy along the neural network, which is consistent with the property of the gra... 详细信息
来源: 评论
BEVHeight: A Robust Framework for Vision-based Roadside 3D Object Detection
BEVHeight: A Robust Framework for Vision-based Roadside 3D O...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Lei Yang Kaicheng Yu Tao Tang Jun Li Kun Yuan Li Wang Xinyu Zhang Peng Chen State Key Laboratory of Automotive Safety and Energy Tsinghua University Autonomous Driving Lab Alibaba Group Shenzhen Campus Sun Yat-sen University Center for Machine Learning Research Peking University
While most recent autonomous driving system focuses on developing perception methods on ego-vehicle sensors, people tend to overlook an alternative approach to leverage intelligent roadside cameras to extend the perce...
来源: 评论