咨询与建议

限定检索结果

文献类型

  • 620 篇 期刊文献
  • 569 篇 会议

馆藏范围

  • 1,189 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 798 篇 工学
    • 590 篇 计算机科学与技术...
    • 485 篇 软件工程
    • 163 篇 信息与通信工程
    • 139 篇 生物工程
    • 84 篇 电气工程
    • 81 篇 控制科学与工程
    • 80 篇 生物医学工程(可授...
    • 67 篇 电子科学与技术(可...
    • 66 篇 光学工程
    • 54 篇 化学工程与技术
    • 44 篇 机械工程
    • 31 篇 动力工程及工程热...
    • 26 篇 交通运输工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 21 篇 材料科学与工程(可...
    • 16 篇 仪器科学与技术
  • 428 篇 理学
    • 206 篇 数学
    • 151 篇 生物学
    • 102 篇 物理学
    • 59 篇 化学
    • 59 篇 统计学(可授理学、...
    • 32 篇 系统科学
  • 202 篇 管理学
    • 108 篇 图书情报与档案管...
    • 107 篇 管理科学与工程(可...
    • 31 篇 工商管理
  • 62 篇 医学
    • 57 篇 临床医学
    • 44 篇 基础医学(可授医学...
    • 33 篇 药学(可授医学、理...
  • 35 篇 法学
    • 28 篇 社会学
  • 18 篇 农学
  • 14 篇 经济学
  • 5 篇 教育学
  • 4 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 37 篇 semantics
  • 30 篇 deep learning
  • 28 篇 training
  • 26 篇 feature extracti...
  • 23 篇 machine learning
  • 22 篇 computational mo...
  • 20 篇 task analysis
  • 18 篇 data mining
  • 17 篇 conferences
  • 17 篇 graph neural net...
  • 16 篇 memory managemen...
  • 15 篇 deep neural netw...
  • 15 篇 forecasting
  • 14 篇 object detection
  • 14 篇 neural networks
  • 14 篇 data models
  • 13 篇 convolution
  • 13 篇 accuracy
  • 11 篇 recommender syst...
  • 11 篇 contrastive lear...

机构

  • 100 篇 national enginee...
  • 53 篇 school of comput...
  • 50 篇 school of cyber ...
  • 38 篇 school of comput...
  • 34 篇 national enginee...
  • 31 篇 hubei engineerin...
  • 29 篇 services computi...
  • 27 篇 cluster and grid...
  • 26 篇 huazhong univers...
  • 26 篇 hubei key labora...
  • 26 篇 zhejiang lab
  • 21 篇 school of comput...
  • 20 篇 school of mathem...
  • 19 篇 school of softwa...
  • 18 篇 national enginee...
  • 17 篇 national univers...
  • 17 篇 smart health big...
  • 16 篇 university of sc...
  • 16 篇 fujian provincia...
  • 16 篇 school of inform...

作者

  • 121 篇 jin hai
  • 118 篇 hai jin
  • 42 篇 xiaofei liao
  • 27 篇 liao xiaofei
  • 26 篇 chen enhong
  • 25 篇 liu jun
  • 23 篇 liu qi
  • 23 篇 hu shengshan
  • 21 篇 haikun liu
  • 19 篇 long zheng
  • 17 篇 zou deqing
  • 16 篇 zhang leo yu
  • 15 篇 deqing zou
  • 15 篇 pan jeng-shyang
  • 15 篇 yu zhang
  • 14 篇 wang meng
  • 14 篇 yu huang
  • 13 篇 jiang xiao
  • 13 篇 li chen
  • 13 篇 li minghui

语言

  • 1,122 篇 英文
  • 57 篇 其他
  • 11 篇 中文
检索条件"机构=Anhui Engineering Lab of Big Data Technology"
1189 条 记 录,以下是1081-1090 订阅
排序:
Load balancing for ultra-dense networks: A deep reinforcement learning based approach
arXiv
收藏 引用
arXiv 2019年
作者: Xu, Yue Xu, Wenjun Wang, Zhi Lin, Jiaru Cui, Shuguang Key Lab of Universal Wireless Communications Ministry of Education Beijing University of Posts and Telecommunications Beijing100876 China State Key Laboratory of Networking and Switching Technology Beijing University of Posts and Telecommunications Beijing100876 China Shenzhen Research Institute of Big Data School of Science and Engineering Chinese University of Hong Kong Shenzhen518172 China Department of Electrical and Computer Engineering University of California DavisCA95616 United States
—In this paper, we propose a deep reinforcement learning (DRL) based mobility load balancing (MLB) algorithm along with a two-layer architecture to solve the large-scale load balancing problem for ultra-dense network... 详细信息
来源: 评论
Coevolution spreading in complex networks
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Wei Liu, Quan-Hui Liang, Junhao Hu, Yanqing Zhou, Tao Cybersecurity Research Institute Sichuan University Chengdu610065 China Big Data Research Center University of Electronic Science and Technology of China Chengdu610054 China Compleχ Lab University of Electronic Science and Technology of China Chengdu610054 China College of Computer Science Sichuan University Chengdu610065 China School of Mathematics Sun Yat-Sen University Guangzhou510275 China School of Data and Computer Science Sun Yat-sen University Guangzhou510006 China Southern Marine Science and Engineering Guangdong Laboratory Zhuhai519082 China
The propagations of diseases, behaviors and information in real systems are rarely independent of each other, but they are coevolving with strong interactions. To uncover the dynamical mechanisms, the evolving spatiot... 详细信息
来源: 评论
bigNeuron: a resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets
收藏 引用
Nature methods 2023年 第6期20卷 824-835页
作者: Linus Manubens-Gil Zhi Zhou Hanbo Chen Arvind Ramanathan Xiaoxiao Liu Yufeng Liu Alessandro Bria Todd Gillette Zongcai Ruan Jian Yang Miroslav Radojević Ting Zhao Li Cheng Lei Qu Siqi Liu Kristofer E Bouchard Lin Gu Weidong Cai Shuiwang Ji Badrinath Roysam Ching-Wei Wang Hongchuan Yu Amos Sironi Daniel Maxim Iascone Jie Zhou Erhan Bas Eduardo Conde-Sousa Paulo Aguiar Xiang Li Yujie Li Sumit Nanda Yuan Wang Leila Muresan Pascal Fua Bing Ye Hai-Yan He Jochen F Staiger Manuel Peter Daniel N Cox Michel Simonneau Marcel Oberlaender Gregory Jefferis Kei Ito Paloma Gonzalez-Bellido Jinhyun Kim Edwin Rubel Hollis T Cline Hongkui Zeng Aljoscha Nern Ann-Shyn Chiang Jianhua Yao Jane Roskams Rick Livesey Janine Stevens Tianming Liu Chinh Dang Yike Guo Ning Zhong Georgia Tourassi Sean Hill Michael Hawrylycz Christof Koch Erik Meijering Giorgio A Ascoli Hanchuan Peng Institute for Brain and Intelligence Southeast University Nanjing China. Microsoft Corporation Redmond WA USA. Tencent AI Lab Bellevue WA USA. Computing Environment and Life Sciences Directorate Argonne National Laboratory Lemont IL USA. Kaya Medical Seattle WA USA. University of Cassino and Southern Lazio Cassino Italy. Center for Neural Informatics Structures and Plasticity Krasnow Institute for Advanced Study George Mason University Fairfax VA USA. Faculty of Information Technology Beijing University of Technology Beijing China. Beijing International Collaboration Base on Brain Informatics and Wisdom Services Beijing China. Nuctech Netherlands Rotterdam the Netherlands. Janelia Research Campus Howard Hughes Medical Institute Ashburn VA USA. Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta Canada. Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing Anhui University Hefei China. Paige AI New York NY USA. Scientific Data Division and Biological Systems and Engineering Division Lawrence Berkeley National Lab Berkeley CA USA. Helen Wills Neuroscience Institute and Redwood Center for Theoretical Neuroscience UC Berkeley Berkeley CA USA. RIKEN AIP Tokyo Japan. Research Center for Advanced Science and Technology (RCAST) The University of Tokyo Tokyo Japan. School of Computer Science University of Sydney Sydney New South Wales Australia. Texas A&M University College Station TX USA. Cullen College of Engineering University of Houston Houston TX USA. Graduate Institute of Biomedical Engineering National Taiwan University of Science and Technology Taipei Taiwan. National Centre for Computer Animation Bournemouth University Poole UK. PROPHESEE Paris France. Department of Neuroscience Columbia University New York NY USA. Mortimer B. Zuckerman Mind Brain Behavior Institute Columbia University New York NY USA. Department of Computer Science Northern Illinois Universit
bigNeuron is an open community bench-testing platform with the goal of setting open standards for accurate and fast automatic neuron tracing. We gathered a diverse set of image volumes across several species that is r...
来源: 评论
Approximate entropy and sample entropy analysis of magnetoencephalography of depression  2
Approximate entropy and sample entropy analysis of magnetoen...
收藏 引用
2nd International Conference on Biological Information and Biomedical engineering, BIBE 2018
作者: Hu, Hui Ding, Chuchu Cui, Yinghan Yan, Wei Wang, Jun Li, Jin Hou, Fengzhen Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province Nanjing University of Posts and Telecommunications Nanjing China Department of Psychiatry The Affiliated Brain Hospital of Nanjing Medical University Nanjing China College of Physics and Information Technology Shaanxi Normal University Xi'an China School of Science China Pharmaceutical University Nanjing China
In this paper, approximate entropy and sample entropy are applied to the study of magnetoencephalography, the entropy of the magnetoencephalography of the depressive and normal people is analyzed under the positive, n... 详细信息
来源: 评论
Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Yingying Jun, A. Liu, Zhiwei Sun, Rui Qian, Liujia Payne, Samuel H. Bittremieux, Wout Ralser, Markus Li, Chen Chen, Yi Dong, Zhen Perez-Riverol, Yasset Khan, Asif Sander, Chris Aebersold, Ruedi Vizcaíno, Juan Antonio Krieger, Jonathan R. Yao, Jianhua Wen, Han Zhang, Linfeng Zhu, Yunping Xuan, Yue Sun, Benjamin Boyang Qiao, Liang Hermjakob, Henning Tang, Haixu Gao, Huanhuan Deng, Yamin Zhong, Qing Chang, Cheng Bandeira, Nuno Li, Ming Weinan, E. Sun, Siqi Yang, Yuedong Omenn, Gilbert S. Zhang, Yue Xu, Ping Fu, Yan Liu, Xiaowen Overall, Christopher M. Wang, Yu Deutsch, Eric W. Chen, Luonan Cox, Jürgen Demichev, Vadim He, Fuchu Huang, Jiaxing Jin, Huilin Liu, Chao Li, Nan Luan, Zhongzhi Song, Jiangning Yu, Kaicheng Wan, Wanggen Wang, Tai Zhang, Kang Zhang, Le Bell, Peter A. Mann, Matthias Zhang, Bing Guo, Tiannan Affiliated Hangzhou First People’s Hospital State Key Laboratory of Medical Proteomics School of Medicine Westlake University Zhejiang Province Hangzhou China Westlake Center for Intelligent Proteomics Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Province Hangzhou China Biology Department Brigham Young University ProvoUT84602 United States Department of Computer Science University of Antwerp Antwerp2020 Belgium Department of Biochemistry CharitéUniversitätsmedizin Berlin Berlin Germany Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology Monash University MelbourneVICVIC 3800 Australia Wellcome Genome Campus Hinxton CambridgeCB10 1SD United Kingdom Harvard Medical School Ludwig Center at Harvard United States Harvard Medical School Broad Institute Ludwig Center at Harvard Dana-Farber Cancer Institute United States Department of Biology Institute of Molecular Systems Biology ETH Zürich Zürich Switzerland Bruker Ltd. MiltonONL9T 6P4 Canada AI for Life Sciences Lab Tencent Shenzhen518057 China State Key Laboratory of Medical Proteomics AI for Science Institute Beijing100080 China Beijing Institute of Lifeomics Beijing102206 China Thermo Fisher Scientific GmbH Hanna-Kunath Str. 11 Bremen28199 Germany Informatics and Predictive Sciences Research Bristol Myers Squibb United States Department of Chemistry Fudan University Songhu Road 2005 Shanghai200438 China Department of Computer Science Luddy School of Informatics Computing and Engineering Indiana University IN47408 United States ProCan® Children’s Medical Research Institute Faculty of Medicine and Health The University of Sydney WestmeadNSW Australia La Jolla CA United States Central China Institute of Artificial Intelligence University of Waterloo Canada AI for Science Institute Center for Machine Learning Research School of Mathematical Sciences Peking University China Research Institute of Intelligent Complex Systems Fudan U
Artificial intelligence (AI) is transforming scientific research, including proteomics. Advances in mass spectrometry (MS)-based proteomics data quality, diversity, and scale, combined with groundbreaking AI technique... 详细信息
来源: 评论
A Comparative Study on Various Deep Learning Techniques for Thai NLP Lexical and Syntactic Tasks on Noisy data
A Comparative Study on Various Deep Learning Techniques for ...
收藏 引用
International Joint Conference on Computer Science and Software engineering (JCSSE)
作者: Amarin Jettakul Chavisa Thamjarat Kawin Liaowongphuthorn Can Udomcharoenchaikit Peerapon Vateekul Prachya Boonkwan Chulalongkorn University Big Data Analytics and IoT Center (CUBIC) Department of Computer Engineering Faculty of EngineeringChulalongkorn University Bangkok Thailand NECTEC Language and Semantic Technology Lab (LST) Pathumthani Thailand
In Natural Language Processing (NLP), there are three fundamental tasks of NLP which are Tokenization being a part of a lexical level, Part-of-Speech tagging (POS) and Named-Entity-Recognition (NER) being parts of a s... 详细信息
来源: 评论
New parameter-free mobility model: Opportunity priority selection model
arXiv
收藏 引用
arXiv 2018年
作者: Liu, Erjian Yan, Xiao-Yong Key Lab. of Integrated Transportation Big Data Application Technology for Transportation Industry Beijing Jiaotong University Beijing100044 China Institute of Transportation System Science and Engineering Beijing Jiaotong University Beijing100044 China Big Data Research Center University of Electronic Science and Technology of China Chengdu611731 China
Predicting human mobility patterns has many practical applications in urban planning, traffic engineering, infectious disease epidemiology, emergency management and location-based services. Developing a universal mode... 详细信息
来源: 评论
iSplit LBI: Individualized partial ranking with ties via split LBI
arXiv
收藏 引用
arXiv 2019年
作者: Xu, Qianqian Sun, Xinwei Yang, Zhiyong Cao, Xiaochun Huang, Qingming Yao, Yuan Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS Microsoft Research Asia State Key Laboratory of Information Security Institute of Information Engineering CAS School of Cyber Security University of Chinese Academy of Sciences School of Computer Science and Tech. University of Chinese Academy of Sciences Key Laboratory of Big Data Mining and Knowledge Management CAS Peng Cheng Laboratory Department of Mathematics Hong Kong University of Science and Technology Hong Kong
Due to the inherent uncertainty of data, the problem of predicting partial ranking from pairwise comparison data with ties has attracted increasing interest in recent years. However, in real-world scenarios, different... 详细信息
来源: 评论
Classification of late-stage wheat powdery mildew based on Isomap and PNN analyses
收藏 引用
International Agricultural engineering Journal 2018年 第4期 404-410页
作者: Huang, Linsheng Wang, Yulong Guo, Wei Zhang, Qing Yang, Xiaodong National Engineering Research Center for Agro-Ecological Big Data Analysis & Application Anhui University Hefei230601 China Beijing Research Center for Information Technology in Agriculture Beijing100097 China College of Information and Management Science Henan Agricultural University Zhengzhou450002 China
In order to provide assistance in precisely distinguishing different severities of wheat powdery mildew, imaging hyperspectral data of disease-infected and healthy wheat leaves were collected in the late growth stage.... 详细信息
来源: 评论
Designing preamplifier for sensing atmospheric electrostatic field strength via supercapacitive sensor
收藏 引用
Journal of Physics: Conference Series 2020年 第1期1607卷
作者: Changhao Wu Yi Xiong Wei Zeng National Engineering Research Center for Agro-Ecological Big Data Analysis and Application School of Electronics and Information Engineering Anhui University Hefei 230601 People's Republic of China Science and Technology Institute Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing and Finishing Wuhan Textile University Wuhan 430073 People's Republic of China School of Physics and Technology MOE Key Laboratory of Artificial Micro- and Nano-Structures and Center for Electron Microscopy Wuhan University Wuhan 430072 People's Republic of China
In order to effectively obtain the signal from sensor, the analogy signal needs to be amplified and then converted into a digital signal for matching to the sensor characteristics. With a supercapacitive electric fiel...
来源: 评论