咨询与建议

限定检索结果

文献类型

  • 626 篇 期刊文献
  • 580 篇 会议

馆藏范围

  • 1,206 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 815 篇 工学
    • 606 篇 计算机科学与技术...
    • 490 篇 软件工程
    • 164 篇 信息与通信工程
    • 139 篇 生物工程
    • 95 篇 控制科学与工程
    • 86 篇 电气工程
    • 80 篇 生物医学工程(可授...
    • 69 篇 电子科学与技术(可...
    • 66 篇 光学工程
    • 54 篇 化学工程与技术
    • 44 篇 机械工程
    • 31 篇 动力工程及工程热...
    • 27 篇 交通运输工程
    • 23 篇 建筑学
    • 23 篇 土木工程
    • 21 篇 材料科学与工程(可...
    • 17 篇 安全科学与工程
  • 429 篇 理学
    • 207 篇 数学
    • 151 篇 生物学
    • 102 篇 物理学
    • 59 篇 化学
    • 59 篇 统计学(可授理学、...
    • 32 篇 系统科学
  • 203 篇 管理学
    • 108 篇 图书情报与档案管...
    • 107 篇 管理科学与工程(可...
    • 32 篇 工商管理
  • 65 篇 医学
    • 59 篇 临床医学
    • 45 篇 基础医学(可授医学...
    • 33 篇 药学(可授医学、理...
  • 35 篇 法学
    • 28 篇 社会学
  • 18 篇 农学
  • 14 篇 经济学
  • 5 篇 教育学
  • 4 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 37 篇 semantics
  • 31 篇 deep learning
  • 29 篇 training
  • 26 篇 feature extracti...
  • 23 篇 machine learning
  • 22 篇 computational mo...
  • 20 篇 task analysis
  • 18 篇 data mining
  • 18 篇 graph neural net...
  • 17 篇 conferences
  • 16 篇 deep neural netw...
  • 16 篇 memory managemen...
  • 15 篇 forecasting
  • 14 篇 object detection
  • 14 篇 neural networks
  • 14 篇 convolution
  • 14 篇 data models
  • 13 篇 accuracy
  • 12 篇 recommender syst...
  • 11 篇 contrastive lear...

机构

  • 103 篇 national enginee...
  • 55 篇 school of comput...
  • 53 篇 school of cyber ...
  • 38 篇 school of comput...
  • 37 篇 national enginee...
  • 33 篇 hubei engineerin...
  • 32 篇 services computi...
  • 29 篇 cluster and grid...
  • 28 篇 hubei key labora...
  • 26 篇 huazhong univers...
  • 26 篇 zhejiang lab
  • 21 篇 school of comput...
  • 21 篇 school of softwa...
  • 20 篇 school of mathem...
  • 18 篇 national enginee...
  • 17 篇 national univers...
  • 17 篇 smart health big...
  • 17 篇 school of inform...
  • 16 篇 university of sc...
  • 16 篇 fujian provincia...

作者

  • 124 篇 jin hai
  • 118 篇 hai jin
  • 42 篇 xiaofei liao
  • 28 篇 liu jun
  • 28 篇 liao xiaofei
  • 27 篇 chen enhong
  • 25 篇 hu shengshan
  • 23 篇 liu qi
  • 21 篇 haikun liu
  • 19 篇 long zheng
  • 17 篇 zou deqing
  • 17 篇 zhang leo yu
  • 15 篇 deqing zou
  • 15 篇 pan jeng-shyang
  • 15 篇 yu zhang
  • 14 篇 wang meng
  • 14 篇 zhou ziqi
  • 14 篇 yu huang
  • 14 篇 li minghui
  • 13 篇 jiang xiao

语言

  • 1,107 篇 英文
  • 89 篇 其他
  • 11 篇 中文
检索条件"机构=Anhui Engineering Lab of Big Data Technology"
1206 条 记 录,以下是901-910 订阅
排序:
A Locality-Aware Energy-Efficient Accelerator for Graph Mining Applications
A Locality-Aware Energy-Efficient Accelerator for Graph Mini...
收藏 引用
IEEE/ACM International Symposium on Microarchitecture (MICRO)
作者: Pengcheng Yao Long Zheng Zhen Zeng Yu Huang Chuangyi Gui Xiaofei Liao Hai Jin Jingling Xue National Engineering Research Center for Big Data Technology and System/Services Computing Technology and System Lab/Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China School of Computer Science and Engineering UNSW Sydney Australia
Graph mining is becoming increasingly important due to the ever-increasing demands on analyzing complex structures in graphs. Existing graph accelerators typically hold most of the randomly-accessed data in an on-chip... 详细信息
来源: 评论
MMLUP: Multi-Source & Multi-Task Learning for User Profiles in Social Network
收藏 引用
Computers, Materials & Continua 2019年 第9期61卷 1105-1115页
作者: Dongjie Zhu Yuhua Wang Chuiju You Jinming Qiu Ning Cao Chenjing Gong Guohua Yang Helen Min Zhou School of Computer Science and Technology Harbin Institute of TechnologyWeihai264209China College of Information Engineering Sanming University365004SanmingChina Fujian Province University Key Lab for Industry Big Data Analysis and Application FujianChina College of Information Engineering Qingdao Binhai UniversityQingdaoChina Jiangsu Province Wireless Sensing System Application Engneering Technology Research and Development Centre China School of Engineering Manukau Institute of TechnologyAuckland2241New Zealand
With the rapid development of the mobile Internet,users generate massive data in different forms in social network every day,and different characteristics of users are reflected by these social media *** to integrate ... 详细信息
来源: 评论
XMAP: Cross-population fine-mapping by leveraging genetic diversity and accounting for confounding bias
收藏 引用
Nature Communications 2023年 第1期14卷 6870页
作者: Cai, Mingxuan Wang, Zhiwei Xiao, Jiashun Hu, Xianghong Chen, Gang Yang, Can Department of Biostatistics City University of Hong Kong Hong Kong Guangzhou HKUST Fok Ying Tung Research Institute Guangzhou 511458 China Department of Mathematics The Hong Kong University of Science and Technology Hong Kong Shenzhen Research Institute of Big Data Shenzhen 518172 China Hunan Provincial Key Lab on Bioinformatics School of Computer Science and Engineering Central South University Changsha 410083 China WeGene Shenzhen Zaozhidao Technology Co. Ltd Shenzhen 518040 China Graduate Affairs Faculty of Medicine Chulalongkorn University Bangkok 10330 Thailand
Fine-mapping prioritizes risk variants identified by genome-wide association studies (GWASs), serving as a critical step to uncover biological mechanisms underlying complex traits. However, several major challenges st...
来源: 评论
T-EGAT: A Temporal Edge Enhanced Graph Attention Network for Tax Evasion Detection
T-EGAT: A Temporal Edge Enhanced Graph Attention Network for...
收藏 引用
IEEE International Conference on big data
作者: Yiyang Wang Qinghua Zheng Jianfei Ruan Yuda Gao Yan Chen Xuanya Li Bo Dong SPKLSTN Lab School of Computer Science and Technology Xi’an Jiaotong University Baidu Inc. National Engineering Lab of Big Data Analytics School of Distance Education Xi’an Jiaotong University
Tax evasion refers to the illegal act of taxpayers using deception and concealment to avoid paying taxes. How to detect tax evasion effectively is always an important topic for the government and academic researchers.... 详细信息
来源: 评论
Semi-supervised Learning to Rank with Uncertain data  16th
Semi-supervised Learning to Rank with Uncertain Data
收藏 引用
16th Web Information Systems and Applications Conference, WISA 2019
作者: Zhang, Xin Zhao, ZhongQi Liu, ChengHou Zhang, Chen Cheng, Zhi Anhui Provincial Engineering Laboratory of Big Data Technology Application for Urban Infrastructure Technology Department of Computer Science and Technology Hefei University Hefei China Suzhou Vocational University Suzhou China Changan Automobile R&D Center Hefei China
Although, semi-supervised learning with a small amount of labeled data can be utilized to improve the effectiveness of learning to rank in information retrieval, the pseudo labels created by semi-supervised learning m... 详细信息
来源: 评论
Unsupervised Social Bot Detection via Structural Information Theory
arXiv
收藏 引用
arXiv 2024年
作者: Peng, Hao Zhang, Jingyun Huang, Xiang Hao, Zhifeng Li, Angsheng Yu, Zhengtao Yu, Philip S. School of Cyber Science and Technology Beihang University No. 37 Xue Yuan Road Haidian District Beijing100191 China State Key Laboratory of Public Big Data Guizhou University No. 2708 South Section of Huaxi Avenue Huaxi District Guizhou Province Guiyang City550025 China Guangxi Key Lab of Multi-source Information Mining & Security Guangxi Normal University Guilin541004 China Yunnan Key Laboratory of Artificial Intelligence Kunming University of Science and Technology Kunming650500 China College of Science University of Shantou No. 243 University Road Shantou515063 China School of Computer Science and Engineering Beihang University No. 37 Xue Yuan Road Haidian District Beijing100191 China Faculty of Information Engineering and Automation Yunnan Key Laboratory of Artificial Intelligence Kunming University of Science and Technology Kunming650500 China Department of Computer Science University of Illinois at Chicago ChicagoIL60607 United States
Research on social bot detection plays a crucial role in maintaining the order and reliability of information dissemination while increasing trust in social interactions. The current mainstream social bot detection mo... 详细信息
来源: 评论
The minority matters: a diversity-promoting collaborative metric learning algorithm  22
The minority matters: a diversity-promoting collaborative me...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Shilong Bao Qianqian Xu Zhiyong Yang Yuan He Xiaochun Cao Qingming Huang State Key Laboratory of Information Security Institute of Information Engineering CAS and School of Cyber Security University of Chinese Academy of Sciences Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS School of Computer Science and Tech. University of Chinese Academy of Sciences Alibaba Group School of Cyber Science and Technology Shenzhen Campus Sun Yat-sen University Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS and School of Computer Science and Tech. University of Chinese Academy of Sciences and Key Laboratory of Big Data Mining and Knowledge Management CAS and Peng Cheng Laboratory
Collaborative Metric Learning (CML) has recently emerged as a popular method in recommendation systems (RS), closing the gap between metric learning and Collaborative Filtering. Following the convention of RS, existin...
来源: 评论
Learning to Reweight Samples with Offline Loss Sequence
Learning to Reweight Samples with Offline Loss Sequence
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Yuhua Wei Xiaoyu Li Jishang Wei Buyue Qian Chen Li School of Computer Science and Technology Xi’an Jiaotong University Xi’an China HP Labs 1501 Page Mill Rd Palo Alto CA USA The First Affiliated Hospital of Xi’an Jiaotong University Xi’an China National Engineering Lab for Big Data Analytics Xi’an Jiaotong University Xi’an China
Deep neural networks (DNNs) provide the best of class solutions to many supervised tasks due to their powerful function fitting capabilities. However, it is challenging to handle data bias, such as label noise and cla... 详细信息
来源: 评论
Erratum to “Event-triggering-based H∞ load frequency control for multi-area cyber–physical power system under DoS attacks” [Franklin Open Volume 3, June 2023, 100012]
Franklin Open
收藏 引用
Franklin Open 2024年 9卷
作者: Xingyue Liu Kaibo Shi Kun Zhou Shiping Wen Yiqian Tang Lin Tang School of Electronic Information and Electrical Engineering Chengdu University Chengdu 610106 PR China Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province China Jiliang University Hangzhou 310018 PR China Engineering Research Center of Power Quality of Ministry of Education Anhui University Hefei 230601 PR China Institute of Electronic and Information Engineering of University of Electronic Science and Technology of China in Guangdong 523808 PR China Australian AI Institute Faculty of Engineering and Information Technology University of Technology Sydney Sydney NSW 2007 Australia
来源: 评论
R2-Net: Relation of relation learning network for sentence semantic matching
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Kun Wu, Le Lv, Guangyi Wang, Meng Chen, Enhong Ruan, Shulan School of Computer Science and Information Engineering Hefei University of Technology China Institute of Artificial Intelligence Hefei Comprehensive National Science Center China Anhui Province Key Laboratory of Big Data Analysis and Application University of Science and Technology of China China
Sentence semantic matching is one of the fundamental tasks in natural language processing, which requires an agent to determine the semantic relation among input sentences. Recently, deep neural networks have achieved... 详细信息
来源: 评论