The increasing use of cloud-based image storage and retrieval systems has made ensuring security and efficiency crucial. The security enhancement of image retrieval and image archival in cloud computing has received c...
详细信息
The increasing use of cloud-based image storage and retrieval systems has made ensuring security and efficiency crucial. The security enhancement of image retrieval and image archival in cloud computing has received considerable attention in transmitting data and ensuring data confidentiality among cloud servers and users. Various traditional image retrieval techniques regarding security have developed in recent years but they do not apply to large-scale environments. This paper introduces a new approach called Triple network-based adaptive grey wolf (TN-AGW) to address these challenges. The TN-AGW framework combines the adaptability of the Grey Wolf Optimization (GWO) algorithm with the resilience of Triple Network (TN) to enhance image retrieval in cloud servers while maintaining robust security measures. By using adaptive mechanisms, TN-AGW dynamically adjusts its parameters to improve the efficiency of image retrieval processes, reducing latency and utilization of resources. However, the image retrieval process is efficiently performed by a triple network and the parameters employed in the network are optimized by Adaptive Grey Wolf (AGW) optimization. Imputation of missing values, Min–Max normalization, and Z-score standardization processes are used to preprocess the images. The image extraction process is undertaken by a modified convolutional neural network (MCNN) approach. Moreover, input images are taken from datasets such as the Landsat 8 dataset and the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset is employed for image retrieval. Further, the performance such as accuracy, precision, recall, specificity, F1-score, and false alarm rate (FAR) is evaluated, the value of accuracy reaches 98.1%, the precision of 97.2%, recall of 96.1%, and specificity of 917.2% respectively. Also, the convergence speed is enhanced in this TN-AGW approach. Therefore, the proposed TN-AGW approach achieves greater efficiency in image retrieving than other existing
Automated detection of plant diseases is crucial as it simplifies the task of monitoring large farms and identifies diseases at their early stages to mitigate further plant degradation. Besides the decline in plant he...
详细信息
Parkinson's disease (PD) diagnosis involves the assessment of a variety of motor and non-motor symptoms. To accurately diagnose PD, it is necessary to differentiate its symptoms from those of other conditions. Dur...
详细信息
Corn, Rice, and Wheat serve as primary staple foods globally, playing a pivotal role in the economies of numerous countries. Despite their paramount importance, these cereal crops face susceptibility to various diseas...
详细信息
The growing dependence on deep learning models for medical diagnosis underscores the critical need for robust interpretability and transparency to instill trust and ensure responsible usage. This study investigates th...
详细信息
As gravitational wave astronomy has advanced, the need for effective and quick signal processing has never been more critical. New detectors such as Laser Interferometer Gravitational-Wave Observatory (LIGO) produces ...
详细信息
The paper addresses the critical problem of application workflow offloading in a fog environment. Resource constrained mobile and Internet of Things devices may not possess specialized hardware to run complex workflow...
详细信息
The Telecare Medicine Information System (TMIS) revolutionizes healthcare delivery by integrating medical equipment and sensors, facilitating proactive and cost-effective services. Accessible online, TMIS empowers pat...
详细信息
With the use of wearable technology, we can now gain useful data-driven insights into our daily routines and personal health. The combination of blockchain, machine learning, deep learning, and wearable Internet of Th...
详细信息
This study examines the use of experimental designs, specifically full and fractional factorial designs, for predicting Alzheimer’s disease with fewer variables. The full factorial design systematically investigates ...
详细信息
暂无评论