Agriculture is crucial to the global economy, particularly in ensuring food security. Recent trends indicate that various plant diseases are causing substantial financial losses in the agricultural sector worldwide. T...
详细信息
Detecting and promptly identifying cracks on road surfaces is of paramount importance for preserving infrastructure integrity and ensuring the safety of road users, including both drivers and pedestrians. Presently, t...
详细信息
In 2018, there were 1 million occurrences of non-melanoma cancer and 288,000 occurrences of malignant skin cancer (MM) recorded worldwide. Given the aging of the population and limited resources for medical care, a co...
详细信息
In the era of advancement in technology and modern agriculture, early disease detection of potato leaves will improve crop yield. Various researchers have focussed on disease due to different types of microbial infect...
详细信息
American Sign Language (ASL) recognition aims to recognize hand gestures, and it is a crucial solution to communicating between the deaf community and hearing people. However, existing sign language recognition algori...
详细信息
Lung cancer is a prevalent and deadly disease worldwide, necessitating accurate and timely detection methods for effective treatment. Deep learning-based approaches have emerged as promising solutions for automated me...
详细信息
Multiarmed bandit(MAB) models are widely used for sequential decision-making in uncertain environments, such as resource allocation in computer communication systems.A critical challenge in interactive multiagent syst...
Multiarmed bandit(MAB) models are widely used for sequential decision-making in uncertain environments, such as resource allocation in computer communication systems.A critical challenge in interactive multiagent systems with bandit feedback is to explore and understand the equilibrium state to ensure stable and tractable system performance.
Individuals with sensorineural hearing loss often experience difficulty comprehending speech when background noise is present. This paper investigates the extent of this problem in various listening scenarios and with...
详细信息
To predict the lithium-ion(Li-ion) battery degradation trajectory in the early phase,arranging the maintenance of battery energy storage systems is of great ***,under different operation conditions,Li-ion batteries pr...
详细信息
To predict the lithium-ion(Li-ion) battery degradation trajectory in the early phase,arranging the maintenance of battery energy storage systems is of great ***,under different operation conditions,Li-ion batteries present distinct degradation patterns,and it is challenging to capture negligible capacity fade in early *** the data-driven method showing promising performance,insufficient data is still a big issue since the ageing experiments on the batteries are too slow and *** this study,we proposed twin autoencoders integrated into a two-stage method to predict the early cycles' degradation *** two-stage method can properly predict the degradation from course to *** twin autoencoders serve as a feature extractor and a synthetic data generator,***,a learning procedure based on the long-short term memory(LSTM) network is designed to hybridize the learning process between the real and synthetic *** performance of the proposed method is verified on three datasets,and the experimental results show that the proposed method can achieve accurate predictions compared to its competitors.
The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network *** environments pose significant challenges in maintaining privacy and *** approaches,such as IDS,have be...
详细信息
The increasing use of cloud-based devices has reached the critical point of cybersecurity and unwanted network *** environments pose significant challenges in maintaining privacy and *** approaches,such as IDS,have been developed to tackle these ***,most conventional Intrusion Detection System(IDS)models struggle with unseen cyberattacks and complex high-dimensional *** fact,this paper introduces the idea of a novel distributed explainable and heterogeneous transformer-based intrusion detection system,named INTRUMER,which offers balanced accuracy,reliability,and security in cloud settings bymultiplemodulesworking together within *** traffic captured from cloud devices is first passed to the TC&TM module in which the Falcon Optimization Algorithm optimizes the feature selection process,and Naie Bayes algorithm performs the classification of *** selected features are classified further and are forwarded to the Heterogeneous Attention Transformer(HAT)*** this module,the contextual interactions of the network traffic are taken into account to classify them as normal or malicious *** classified results are further analyzed by the Explainable Prevention Module(XPM)to ensure trustworthiness by providing interpretable *** the explanations fromthe classifier,emergency alarms are transmitted to nearby IDSmodules,servers,and underlying cloud devices for the enhancement of preventive *** experiments on benchmark IDS datasets CICIDS 2017,Honeypots,and NSL-KDD were conducted to demonstrate the efficiency of the INTRUMER model in detecting network trafficwith high accuracy for different *** outperforms state-of-the-art approaches,obtaining better performance metrics:98.7%accuracy,97.5%precision,96.3%recall,and 97.8%*** results validate the robustness and effectiveness of INTRUMER in securing diverse cloud environments against sophisticated cyber threats.
暂无评论