Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs) is not only constitute an encouraging research domain but also represent a promising industrial trend that permits the development of various IoT-based ...
详细信息
In recent years, mental health issues have profoundly impacted individuals’ well-being, necessitating prompt identification and intervention. Existing approaches grapple with the complex nature of mental health, faci...
详细信息
In recent years, mental health issues have profoundly impacted individuals’ well-being, necessitating prompt identification and intervention. Existing approaches grapple with the complex nature of mental health, facing challenges like task interference, limited adaptability, and difficulty in capturing nuanced linguistic expressions indicative of various conditions. In response to these challenges, our research presents three novel models employing multi-task learning (MTL) to understand mental health behaviors comprehensively. These models encompass soft-parameter sharing-based long short-term memory with attention mechanism (SPS-LSTM-AM), SPS-based bidirectional gated neural networks with self-head attention mechanism (SPS-BiGRU-SAM), and SPS-based bidirectional neural network with multi-head attention mechanism (SPS-BNN-MHAM). Our models address diverse tasks, including detecting disorders such as bipolar disorder, insomnia, obsessive-compulsive disorder, and panic in psychiatric texts, alongside classifying suicide or non-suicide-related texts on social media as auxiliary tasks. Emotion detection in suicide notes, covering emotions of abuse, blame, and sorrow, serves as the main task. We observe significant performance enhancement in the primary task by incorporating auxiliary tasks. Advanced encoder-building techniques, including auto-regressive-based permutation and enhanced permutation language modeling, are recommended for effectively capturing mental health contexts’ subtleties, semantic nuances, and syntactic structures. We present the shared feature extractor called shared auto-regressive for language modeling (S-ARLM) to capture high-level representations that are useful across tasks. Additionally, we recommend soft-parameter sharing (SPS) subtypes-fully sharing, partial sharing, and independent layer-to minimize tight coupling and enhance adaptability. Our models exhibit outstanding performance across various datasets, achieving accuracies of 96.9%, 97.
Accidents caused by drivers who exhibit unusual behavior are putting road safety at ever-greater risk. When one or more vehicle nodes behave in this way, it can put other nodes in danger and result in potentially cata...
详细信息
The integration of machine learning and electrocatalysis presents nota ble advancements in designing and predicting the performance of chiral materials for hydrogen evolution reactions(HER).This study utilizes theor...
详细信息
The integration of machine learning and electrocatalysis presents nota ble advancements in designing and predicting the performance of chiral materials for hydrogen evolution reactions(HER).This study utilizes theoretical calculations and machine learning techniques to assess the HER performance of both chiral and achiral M-N-SWCNTs(M=In,Bi,and Sb) single-atom catalysts(SACs).The stability preferences of metal atoms are dependent on chirality when interacting with chiral *** HER activity of the right-handed In-N-SWCNT is 5.71 times greater than its achiral counterpart,whereas the left-handed In-N-SWCNT exhibits a 5.12-fold *** calculated hydrogen adsorption free energy for the right-handed In-N-SWCNT reaches as low as-0.02 *** enhancement is attributed to the symmetry breaking in spin density distribution,transitioning from C2Vin achiral SACs to C2in chiral SACs,which facilitates active site transfer and enhances local spin ***-handed M-N-SWCNTs exhibit superior α-electron separation and transport efficiency relative to left-handed variants,owing to the chiral induced spin selectivity(CISS) effect,with spin-up α-electron density reaching 3.43 × 10-3e/Bohr3at active *** learning provides deeper insights,revealing that the interplay of weak spatial electronic effects and appropriate curvature-chirality effects significantly enhances HER performance.A weaker spatial electronic effect correlates with higher HER activity,larger exchange current density,and higher turnover *** curvature-chirality effect undersco res the influence of intrinsic structures on HER *** findings offer critical insights into the role of chirality in electrocatalysis and propose innovative approaches for optimizing HER through chirality.
The analysis of high-dimensional datasets poses significant challenges, particularly in big data analytics where extracting meaningful insights is crucial. Current techniques often struggle with maintaining a balance ...
详细信息
Effective management of electricity consumption (EC) in smart buildings (SBs) is crucial for optimizing operational efficiency, cost savings, and ensuring sustainable resource utilization. Accurate EC prediction enabl...
详细信息
Deep learning methods have played a prominent role in the development of computer visualization in recent years. Hyperspectral imaging (HSI) is a popular analytical technique based on spectroscopy and visible imaging ...
详细信息
In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable *** predictivemodels for thyroid cancer enhan...
详细信息
In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable *** predictivemodels for thyroid cancer enhance early detection,improve resource allocation,and reduce ***,the widespread adoption of these models in clinical practice demands predictive performance along with interpretability and *** paper proposes a novel association-rule based feature-integratedmachine learning model which shows better classification and prediction accuracy than present *** study also focuses on the application of SHapley Additive exPlanations(SHAP)values as a powerful tool for explaining thyroid cancer prediction *** the proposed method,the association-rule based feature integration framework identifies frequently occurring attribute combinations in the *** original dataset is used in trainingmachine learning models,and further used in generating SHAP values *** the next phase,the dataset is integrated with the dominant feature sets identified through association-rule based *** new integrated dataset is used in re-training the machine learning *** new SHAP values generated from these models help in validating the contributions of feature sets in predicting *** conventional machine learning models lack interpretability,which can hinder their integration into clinical decision-making *** this study,the SHAP values are introduced along with association-rule based feature integration as a comprehensive framework for understanding the contributions of feature sets inmodelling the *** study discusses the importance of reliable predictive models for early diagnosis of thyroid cancer,and a validation framework of *** proposed model shows an accuracy of 93.48%.Performance metrics such as precision,recall,F1-score,and the area un
A photovoltaic (PV) generator integrated low voltage (LV) distribution system may be affected by lightning strikes due to thunderstorms. In this paper, a PV generatorintegrated LV distribution network is considered to...
详细信息
Neuromorphic computing is a new paradigm that emerges from the structure and function of the human brain and aims to revolutionize computing. The technology is designed to simulate the high speed, low power consumptio...
详细信息
暂无评论