咨询与建议

限定检索结果

文献类型

  • 212 篇 期刊文献
  • 19 篇 会议
  • 1 册 图书

馆藏范围

  • 232 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 183 篇 理学
    • 142 篇 数学
    • 56 篇 物理学
    • 45 篇 统计学(可授理学、...
    • 43 篇 系统科学
    • 18 篇 化学
    • 17 篇 生物学
    • 3 篇 地球物理学
  • 146 篇 工学
    • 48 篇 计算机科学与技术...
    • 40 篇 软件工程
    • 37 篇 控制科学与工程
    • 30 篇 力学(可授工学、理...
    • 22 篇 动力工程及工程热...
    • 21 篇 材料科学与工程(可...
    • 16 篇 电气工程
    • 15 篇 电子科学与技术(可...
    • 14 篇 化学工程与技术
    • 8 篇 生物工程
    • 5 篇 信息与通信工程
    • 5 篇 土木工程
    • 5 篇 生物医学工程(可授...
    • 3 篇 光学工程
    • 3 篇 建筑学
  • 16 篇 管理学
    • 12 篇 管理科学与工程(可...
    • 5 篇 工商管理
    • 3 篇 图书情报与档案管...
  • 13 篇 医学
    • 10 篇 临床医学
    • 7 篇 基础医学(可授医学...
    • 5 篇 公共卫生与预防医...
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 3 篇 农学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 10 篇 navier stokes eq...
  • 6 篇 finite element m...
  • 5 篇 eigenvalues and ...
  • 5 篇 lattice-boltzman...
  • 4 篇 advection
  • 4 篇 constrained opti...
  • 4 篇 finite differenc...
  • 4 篇 lagrange multipl...
  • 4 篇 monte carlo meth...
  • 3 篇 two phase flow
  • 3 篇 inverse problems
  • 3 篇 distribution fun...
  • 3 篇 entropy
  • 3 篇 stochastic syste...
  • 2 篇 covid-19
  • 2 篇 multiphase flows
  • 2 篇 neurons
  • 2 篇 scaling laws
  • 2 篇 maximum principl...
  • 2 篇 iterative method...

机构

  • 39 篇 school of mathem...
  • 37 篇 hubei key labora...
  • 29 篇 institute of int...
  • 8 篇 center for appli...
  • 6 篇 fariborz maseeh ...
  • 6 篇 center for appli...
  • 6 篇 school of mathem...
  • 5 篇 institute of int...
  • 5 篇 college of mathe...
  • 5 篇 department of ap...
  • 4 篇 department of ph...
  • 4 篇 national radio a...
  • 4 篇 health managemen...
  • 4 篇 leiden observato...
  • 4 篇 joint institute ...
  • 4 篇 kavli institute ...
  • 4 篇 department of as...
  • 4 篇 jila and departm...
  • 4 篇 school of natura...
  • 4 篇 university colle...

作者

  • 27 篇 shi baochang
  • 27 篇 chai zhenhua
  • 11 篇 liu xi
  • 10 篇 vassilevski pana...
  • 10 篇 chen ying
  • 9 篇 zhenhua chai
  • 9 篇 baochang shi
  • 8 篇 duan jinqiao
  • 8 篇 zhan chengjie
  • 6 篇 elman howard c.
  • 5 篇 liu haixia
  • 4 篇 aviad levis
  • 4 篇 schmidt michael ...
  • 4 篇 alan p. marscher
  • 4 篇 jirong mao
  • 4 篇 charles f. gammi...
  • 4 篇 razieh emami
  • 4 篇 svetlana jorstad
  • 4 篇 nicola marchili
  • 4 篇 chet ruszczyk

语言

  • 216 篇 英文
  • 16 篇 其他
检索条件"机构=Applied Mathematics & Statistics and Scientific Computing Program"
232 条 记 录,以下是191-200 订阅
排序:
Nonlinear multigrid based on local spectral coarsening for heterogeneous difiusion problems
arXiv
收藏 引用
arXiv 2020年
作者: Leea, Chak Shing Hamon, Francois Castelletto, Nicola Vassilevski, Panayot S. White, Joshua Center for Applied Scientific Computing Lawrence Livermore National Laboratory LivermoreCA94550 United States Total EandP Research and Technology HoustonTX77002 United States Atmospheric Earth and Energy Division Lawrence Livermore National Laboratory LivermoreCA94550 United States Department of Energy Resources Engineering Stanford University StanfordCA94305 United States Fariborz Maseeh Department of Mathematics and Statistics Portland State University PortlandOR97201 United States
This work develops a nonlinear multigrid method for difiusion problems discretized by cell-centered finite volume methods on general unstructured grids. The multigrid hierarchy is constructed algebraically using aggre... 详细信息
来源: 评论
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI  41
Position: Bayesian Deep Learning is Needed in the Age of Lar...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina Aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论
Multilevel convergence analysis of multigrid-reduction-in-time
arXiv
收藏 引用
arXiv 2018年
作者: HESSENTHALER, ANDREAS SOUTHWORTH, BEN S. NORDSLETTEN, DAVID RÖHRLE, OLIVER FALGOUT, ROBERT D. SCHRODER, JACOB B. Institute for Modelling and Simulation of Biomechanical Systems University of Stuttgart Pfaffenwaldring 5a Stuttgart70565 Germany Department of Applied Mathematics University of Colorado at Boulder CO United States Division of Imaging Sciences and Biomedical Engineering King's College London St. Thomas Hospital 4th Floor Lambeth Wing LondonSE1 7EH United Kingdom Center for Applied Scientific Computing Lawrence Livermore National Laboratory P.O. Box 808 L-561 LivermoreCA94551 United States Department of Mathematics and Statistics University of New Mexico 310 SMLC AlbuquerqueNM87131 United States
This paper presents a multilevel convergence framework for multigrid-reduction-intime (MGRIT) as a generalization of previous two-grid estimates. The framework provides a priori upper bounds on the convergence of MGRI... 详细信息
来源: 评论
An improved stopping criterion for anisotropic diffusion
收藏 引用
AIP Conference Proceedings 2015年 第1期1648卷
作者: Maryam Khanian Michael Breuß Ali Davari *Institute for Applied Mathematics and Scientific Computing Brandenburg University of Technology (BTU) Cottbus-Senftenberg Platz der Deutschen Einheit 1 HG 03046 Cottbus Germany †Department of Mathematics Faculty of Mathematical Sciences and Statistics University of Isfahan Isfahan Iran
Anisotropic diffusion is a time-dependent process in image processing useful for denoising and related tasks. applied at an input image, the latter is gradually simplified in such a way that edges tend to be preserved...
来源: 评论
Potential numerical techniques and challenges for atmospheric modeling
Potential numerical techniques and challenges for atmospheri...
收藏 引用
作者: Li, J. Steppeler, J. Fang, F. Pain, C.C. Zhu, J. Peng, X. Dong, L. Li, Y. Tao, L. Leng, W. Wang, Y. Zheng, J. International Center for Climate and Environment Sciences Institute of Atmospheric Physics Chinese Academy of Sciences Beijing China Hamburg Germany Applied Modelling and Computation Group Department of Earth Science and Engineering Imperial College London London United Kingdom International Center for Climate and Environment Sciences Institute of Atmospheric Physics Chinese Academy of Sciences Department of Atmospheric Sciences University of Chinese Academy of Sciences Beijing China State Key Laboratory of Severe Weather Chinese Academy of Meteorological Sciences Beijing China State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics Institute of Atmospheric Physics Chinese Academy of Sciences Beijing China State Key Laboratory of Scientific and Engineering Computing Chinese Academy of Sciences Beijing China School of Mathematics and Statistics Henan University Kaifeng China Center for Excellence in Regional Atmospheric Environment Institute of Urban Environment Chinese Academy of Sciences Xiamen China
来源: 评论
Parallelized Domain Decomposition for Multi-Dimensional Lagrangian Random Walk, Mass-Transfer Particle Tracking Schemes
SSRN
收藏 引用
SSRN 2022年
作者: Schauer, Lucas Schmidt, Michael J. Engdahl, Nicholas B. Pankavich, Stephen D. Benson, David A. Bolster, Diogo Department of Applied Mathematics and Statistics Colorado School of Mines GoldenCO80401 United States Center for Computing Research Sandia National Laboratories AlbuquerqueNM87185 United States Department of Civil and Environmental Engineering Washington State University PullmanWA99164 United States Hydrologic Science and Engineering Program Department of Geology and Geological Engineering Colorado School of Mines GoldenCO80401 United States Department of Civil and Environmental Engineering and Earth Sciences University of Notre Dame Notre DameIN46556 United States
We develop a multi-dimensional, parallelized domain decomposition strategy (DDC) for mass-transfer particle tracking (MTPT) methods. These methods are a type of Lagrangian algorithm for simulating reactive transport a... 详细信息
来源: 评论
Convergence of Mass Transfer Particle Tracking Schemes for the Simulation of Advection-Diffusion-Reaction Equations
SSRN
收藏 引用
SSRN 2024年
作者: Pankavich, Stephen D. Schauer, Lucas Schmidt, Michael J. Engdahl, Nicholas B. Bolster, Diogo Benson, David A. Department of Applied Mathematics and Statistics Colorado School of Mines GoldenCO80401 United States Center for Computing Research Sandia National Laboratories AlbuquerqueNM87185 United States Department of Civil and Environmental Engineering Washington State University PullmanWA99164 United States Department of Civil and Environmental Engineering and Earth Sciences University of Notre Dame Notre DameIN46556 United States Hydrologic Science and Engineering Program Department of Geology and Geological Engineering Colorado School of Mines GoldenCO80401 United States
Since their introduction, multi-species mass-transfer particle tracking (or MTPT) algorithms have been used to accurately simulate advective and dispersive transport of solutes, even within systems that feature nonlin... 详细信息
来源: 评论
Parallelized Domain Decomposition for Multi-Dimensional Lagrangian Random Walk, Mass-Transfer Particle Tracking Schemes
arXiv
收藏 引用
arXiv 2022年
作者: Schauer, Lucas Schmidt, Michael J. Engdahl, Nicholas B. Pankavich, Stephen D. Benson, David A. Bolster, Diogo Department of Applied Mathematics and Statistics Colorado School of Mines GoldenCO80401 United States Center for Computing Research Sandia National Laboratories AlbuquerqueNM87185 United States Department of Civil and Environmental Engineering Washington State University PullmanWA99164 United States Hydrologic Science and Engineering Program Department of Geology and Geological Engineering Colorado School of Mines GoldenCO80401 United States Department of Civil and Environmental Engineering and Earth Sciences University of Notre Dame Notre Dame IN46556 United States
We develop a multi-dimensional, parallelized domain decomposition strategy (DDC) for mass-transfer particle tracking (MTPT) methods. These methods are a type of Lagrangian algorithm for simulating reactive transport a... 详细信息
来源: 评论
The estimation of the effective reproductive number from disease outbreak data
arXiv
收藏 引用
arXiv 2020年
作者: Cintrón-Arias, Ariel Castillo-Chávez, Carlos Bettencourt, Luís M.A. Lloyd, Alun L. Banks, H.T. Statistical and Applied Mathematical Sciences Institute 19 T. W. Alexander Drive P.O. Box 14006 Research Triangle ParkNC27709-4006 United States Department of Mathematics and Statistics Arizona State University P.O. Box 871804 TempeAZ85287 - 1804 Los Alamos National Laboratory Mail Stop B284 Los AlamosNM87545 United States Biomathematics Graduate Program Department of Mathematics North Carolina State University RaleighNC27695 United States Center for Research in Scientific Computation North Carolina State University P.O. Box 8205 RaleighNC27695
We consider a single outbreak susceptible-infected-recovered (SIR) model and corresponding estimation procedures for the effective reproductive number R(t). We discuss the estimation of the underlying SIR parameters w... 详细信息
来源: 评论
A Comparative Study of Gaussian Process Machine Learning and Time Series Analysis Techniques for Predicting Unemployment Rate
A Comparative Study of Gaussian Process Machine Learning and...
收藏 引用
International Conference on Computer and Automation Engineering, ICCAE
作者: Muhammad Naeim Mohd Aris Shalini Nagaratnam Nurul Nnadiah Zakaria Muhammad Fadhirul Anuar Mohd Azami Muhammad Afiq Ikram Samsudin Ernee Sazlinayati Othman Department of American Degree Transfer Program School of American Education Sunway University Bandar Sunway Malaysia Department of Econometrics and Business Statistics School of Business Monash University Malaysia Bandar Sunway Malaysia Department of Fundamental and Applied Sciences Faculty of Science and Information Technology Universiti Teknologi PETRONAS Seri Iskandar Malaysia Department of American Degree Transfer Programme School of American Education Sunway University Bandar Sunway Malaysia College of Computing Informatics and Mathematics Universiti Teknologi MARA Seremban 3 Malaysia Centre of Foundation Studies Universiti Teknologi MARA Cawangan Selangor Kampus Dengkil Dengkil Malaysia
This study explores and compares the capability of Gaussian process machine learning (GPML) with time series analysis techniques, which are autoregressive integrated moving average (ARIMA), seasonal ARIMA (SARIMA) and... 详细信息
来源: 评论