咨询与建议

限定检索结果

文献类型

  • 348 篇 期刊文献
  • 135 篇 会议

馆藏范围

  • 483 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 313 篇 工学
    • 153 篇 计算机科学与技术...
    • 127 篇 软件工程
    • 49 篇 控制科学与工程
    • 47 篇 生物工程
    • 45 篇 信息与通信工程
    • 44 篇 生物医学工程(可授...
    • 32 篇 电气工程
    • 31 篇 电子科学与技术(可...
    • 30 篇 光学工程
    • 23 篇 材料科学与工程(可...
    • 23 篇 化学工程与技术
    • 20 篇 力学(可授工学、理...
    • 14 篇 仪器科学与技术
    • 13 篇 动力工程及工程热...
  • 312 篇 理学
    • 166 篇 数学
    • 86 篇 物理学
    • 77 篇 统计学(可授理学、...
    • 72 篇 生物学
    • 44 篇 化学
    • 42 篇 系统科学
    • 12 篇 天文学
    • 9 篇 地球物理学
  • 63 篇 管理学
    • 33 篇 图书情报与档案管...
    • 27 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 38 篇 医学
    • 28 篇 临床医学
    • 25 篇 基础医学(可授医学...
    • 15 篇 公共卫生与预防医...
    • 13 篇 药学(可授医学、理...
  • 18 篇 农学
  • 10 篇 法学
    • 10 篇 社会学
  • 7 篇 教育学
  • 4 篇 经济学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 8 篇 machine learning
  • 6 篇 diffusion
  • 5 篇 cosmological par...
  • 5 篇 mean square erro...
  • 5 篇 large scale stru...
  • 5 篇 stochastic syste...
  • 5 篇 proteins
  • 5 篇 tumors
  • 5 篇 monte carlo meth...
  • 4 篇 covid-19
  • 4 篇 eigenvalues and ...
  • 4 篇 inverse problems
  • 4 篇 deep learning
  • 4 篇 cosmic microwave...
  • 4 篇 genes
  • 4 篇 vectors
  • 4 篇 optimization
  • 4 篇 mathematics
  • 4 篇 gene expression
  • 4 篇 clustering algor...

机构

  • 18 篇 applied mathemat...
  • 9 篇 program in appli...
  • 8 篇 health managemen...
  • 7 篇 university colle...
  • 7 篇 institute of app...
  • 7 篇 applied physics ...
  • 7 篇 mathematics and ...
  • 6 篇 sage bionetworks...
  • 6 篇 yale university ...
  • 6 篇 department of ph...
  • 6 篇 university of pi...
  • 6 篇 department of mo...
  • 6 篇 health systems a...
  • 6 篇 lab crestview ra...
  • 6 篇 wits centre for ...
  • 6 篇 hiroshima astrop...
  • 6 篇 department of ph...
  • 6 篇 department of ra...
  • 6 篇 department of ap...
  • 6 篇 precisionfda u.s...

作者

  • 25 篇 jasra ajay
  • 23 篇 krishnaswamy smi...
  • 11 篇 wolf guy
  • 10 篇 masuda naoki
  • 10 篇 ruzayqat hamza
  • 9 篇 maama mohamed
  • 8 篇 jiang yi
  • 8 篇 schwartz jonatha...
  • 8 篇 smita krishnaswa...
  • 7 篇 bakas spyridon
  • 7 篇 meier zeke
  • 7 篇 wang chunhao
  • 7 篇 chung verena
  • 7 篇 dako farouk
  • 7 篇 calabrese evan
  • 7 篇 eddy james
  • 7 篇 iglesias juan eu...
  • 7 篇 hovden robert
  • 7 篇 perlmutter micha...
  • 6 篇 li hongwei bran

语言

  • 453 篇 英文
  • 28 篇 其他
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 中文
检索条件"机构=Applied Mathematics and Computational Science Program Computer"
483 条 记 录,以下是161-170 订阅
排序:
Quantum Error Mitigation by Pauli Check Sandwiching
arXiv
收藏 引用
arXiv 2022年
作者: Gonzales, Alvin Shaydulin, Ruslan Saleem, Zain H. Suchara, Martin Intelligence Community Postdoctoral Research Fellowship Program Argonne National Laboratory LemontIL United States Mathematics and Computer Science Division Argonne National Laboratory LemontIL United States Global Technology Applied Research JPMorgan Chase New YorkNY United States Amazon Web Services Amazon SeattleWA United States
We describe and analyze an error mitigation technique that uses multiple pairs of parity checks to detect the presence of errors. Each pair of checks uses one ancilla qubit to detect a component of the error operator ... 详细信息
来源: 评论
Canada needs to rapidly escalate public health interventions for its COVID-19 mitigation strategies
收藏 引用
Infectious Disease Modelling 2020年 第1期5卷 316-322页
作者: Francesca Scarabel Lorenzo Pellis Nicola Luigi Bragazzi Jianhong Wu Laboratory for Industrial and Applied Mathematics Department of Mathematics and StatisticsYork UniversityTorontoOntarioM3J1P3Canada CDLab-Computational Dynamics Laboratory Department of MathematicsComputer Science and PhysicsUniversity of Udinevia delle scienze 20633100UdineItaly School of Mathematics University of ManchesterManchesterM139PLUK Fields-CQAM Laboratory of Mathematics for Public Health York UniversityTorontoOntarioCanadaM3J 1P3
Background:After the declaration of COVID-19 pandemic on March 11th,2020,local transmission chains starting in different countries including Canada are forcing governments to take decisions on public health interventi... 详细信息
来源: 评论
DPA-2:a large atomic model as a multitask learner
收藏 引用
npj computational Materials 2024年 第1期10卷 185-199页
作者: Duo Zhang Xinzijian Liu Xiangyu Zhang Chengqian Zhang Chun Cai Hangrui Bi Yiming Du Xuejian Qin Anyang Peng Jiameng Huang Bowen Li Yifan Shan Jinzhe Zeng Yuzhi Zhang Siyuan Liu Yifan Li Junhan Chang Xinyan Wang Shuo Zhou Jianchuan Liu Xiaoshan Luo Zhenyu Wang Wanrun Jiang Jing Wu Yudi Yang Jiyuan Yang Manyi Yang Fu-Qiang Gong Linshuang Zhang Mengchao Shi Fu-Zhi Dai Darrin M.York Shi Liu Tong Zhu Zhicheng Zhong Jian Lv Jun Cheng Weile Jia Mohan Chen Guolin Ke Weinan E Linfeng Zhang Han Wang AI for Science Institute BeijingP.R.China DP Technology BeijingP.R.China Academy for Advanced Interdisciplinary Studies Peking UniversityBeijingP.R.China State Key Lab of Processors Institute of Computing TechnologyChinese Academy of SciencesBeijingP.R.China University of Chinese Academy of Sciences BeijingP.R.China HEDPS CAPTCollege of EngineeringPeking UniversityBeijingP.R.China Ningbo Institute of Materials Technology and Engineering Chinese Academy of SciencesNingboP.R.China CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology Chinese Academy of SciencesNingboP.R.China School of Electronics Engineering and Computer Science Peking UniversityBeijingP.R.China Shanghai Engineering Research Center of Molecular Therapeutics&New Drug Development School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiP.R.China Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine and Department of Chemistry and Chemical BiologyRutgers UniversityPiscatawayNJUSA Department of Chemistry Princeton UniversityPrincetonNJUSA College of Chemistry and Molecular Engineering Peking UniversityBeijingP.R.China Yuanpei College Peking UniversityBeijingP.R.China School of Electrical Engineering and Electronic Information Xihua UniversityChengduP.R.China State Key Laboratory of Superhard Materials College of PhysicsJilin UniversityChangchunP.R.China Key Laboratory of Material Simulation Methods&Software of Ministry of Education College of PhysicsJilin UniversityChangchunP.R.China International Center of Future Science Jilin UniversityChangchunP.R.China Key Laboratory for Quantum Materialsof Zhejiang Province Department of PhysicsSchool of ScienceWestlake UniversityHangzhouP.R.China Atomistic Simulations Italian Institute of TechnologyGenovaItaly State Key Laboratory of Physical Chemistry of Solid Surface iChEMCollege of Chemistry and Chemical EngineeringXiame
The rapid advancements in artificial intelligence(AI)are catalyzing transformative changes in atomic modeling,simulation,and ***-driven potential energy models havedemonstrated the capability to conduct large-scale,lo... 详细信息
来源: 评论
Iterative quantum optimization of spin glass problems with rapidly oscillating transverse fields
arXiv
收藏 引用
arXiv 2024年
作者: Barton, Brandon Sagal, Jacob Feeney, Sean Grattan, George Patnaik, Pratik Oganesyan, Vadim Carr, Lincoln D. Kapit, Eliot Quantum Engineering Program Colorado School of Mines 1523 Illinois St GoldenCO80401 United States Department of Applied Mathematics and Statistics Colorado School of Mines 1500 Illinois St GoldenCO80401 United States Center for Computational Quantum Physics Flatiron Institute 162 5th Avenue New YorkNY10010 United States Department of Physics Colorado School of Mines 1523 Illinois St GoldenCO80401 United States Department of Computer Science Colorado School of Mines 1500 Illinois St GoldenCO80401 United States Department of Physics and Astronomy College of Staten Island City University of New York Staten IslandNY10314 United States Physics program and Initiative for the Theoretical Sciences The Graduate Center City University of New York New YorkNY10016 United States
In this work, we introduce a new iterative quantum algorithm, called Iterative Symphonic Tunneling for Satisfiability problems (IST-SAT), which solves quantum spin glass optimization problems using high-frequency osci... 详细信息
来源: 评论
Fault Diagnosis of Wind Energy Conversion Systems Using Gaussian Process Regression-based Multi-Class Random Forest
收藏 引用
IFAC-PapersOnLine 2022年 第6期55卷 127-132页
作者: Majdi Mansouri Radhia Fezai Mohamed Trabelsi Hajji Mansour Hazem Nounou Mohamed Nounou Electrical and Computer Engineering Program Texas A&M University at Qatar Doha Qatar Department of Mathematics and Sciences Prince Sultan University Riyadh 11586 Saudi Arabia Research Laboratory of Automation Signal Processing and Image National Engineering School of Monastir 5019 Tunisia Electronic and Communications Engineering Department Kuwait College of Science and Technology P. O. Box 27235 Kuwait Higher Institute of Applied Science and Technology of Kasserine University of Kairouan PO Box 471 1200 Kasserine Tunisia Chemical Engineering Program Texas A&M University at Qatar Doha Qatar
This work proposes a new fault diagnosis approach for a wind energy conversion (WEC) system. The proposed technique merges the benefits of feature extraction based on Gaussian Process Regression (GPR) and Multi-Class ... 详细信息
来源: 评论
The Smart Analysis of Performing Scalable Inference for Big Data Analytics
The Smart Analysis of Performing Scalable Inference for Big ...
收藏 引用
International Conference on Power Energy, Environment and Intelligent Control (PEEIC)
作者: Vishakha D Bhandarkar Aruna Sri Rongali Mohamed Dawood Shamout Prof. Sachin Pund Gigih Forda Nama Shrishailappa Patil Applied Mathematics and Humanities Yeshwantrao Chavan College of Engineering India Graduate Doctoral Information Technology/Graduate (Information Technology Emphasis/Information Technology Ph.D.) University of The Cumberlands US Department of Management College of Business Administration University of Sharjah Sharjah United Arab Emirates Department of Industrial Engineering Shri Ramdeobaba College of Engineering and Management Nagpur Maharashtra India Department of Informatics Doctoral Program of Environtmental Science University of Lampung Bandar Lampung Computer engineering Vishwakarma Institute of Technology Pune
This paper examines the reproducibility of massive information analytics under particular factors. The paper proposes the “performing Scalable Inference” technique to cope with scalability troubles and to exploit cu...
来源: 评论
Artificial intelligence for modelling infectious disease epidemics
收藏 引用
Nature 2025年 第8051期638卷 623-635页
作者: Kraemer, Moritz U. G. Tsui, Joseph L.-H. Chang, Serina Y. Lytras, Spyros Khurana, Mark P. Vanderslott, Samantha Bajaj, Sumali Scheidwasser, Neil Curran-Sebastian, Jacob Liam Semenova, Elizaveta Zhang, Mengyan Unwin, H. Juliette T. Watson, Oliver J. Mills, Cathal Dasgupta, Abhishek Ferretti, Luca Scarpino, Samuel V. Koua, Etien Morgan, Oliver Tegally, Houriiyah Paquet, Ulrich Moutsianas, Loukas Fraser, Christophe Ferguson, Neil M. Topol, Eric J. Duchêne, David A. Stadler, Tanja Kingori, Patricia Parker, Michael J. Dominici, Francesca Shadbolt, Nigel Suchard, Marc A. Ratmann, Oliver Flaxman, Seth Holmes, Edward C. Gomez-Rodriguez, Manuel Schölkopf, Bernhard Donnelly, Christl A. Pybus, Oliver G. Cauchemez, Simon Bhatt, Samir Pandemic Sciences Institute University of Oxford Oxford United Kingdom Department of Biology University of Oxford Oxford United Kingdom Department of Electrical Engineering and Computer Science University of California Berkeley Berkeley CA United States UCSF UC Berkeley Joint Program in Computational Precision Health Berkeley CA United States Division of Systems Virology Department of Microbiology and Immunology The Institute of Medical Science The University of Tokyo Tokyo Japan Section of Epidemiology Department of Public Health University of Copenhagen Copenhagen Denmark Oxford Vaccine Group University of Oxford and NIHR Oxford Biomedical Research Centre Oxford United Kingdom Department of Epidemiology and Biostatistics Imperial College London London United Kingdom Department of Computer Science University of Oxford Oxford United Kingdom School of Mathematics University of Bristol Bristol United Kingdom MRC Centre for Global Infectious Disease Analysis School of Public Health Imperial College London London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Doctoral Training Centre University of Oxford Oxford United Kingdom Institute for Experiential AI Northeastern University MA Boston Thailand Santa Fe Institute Santa Fe NM United States World Health Organization Regional Office for Africa Brazzaville Congo WHO Hub for Pandemic and Epidemic Intelligence Health Emergencies Programme World Health Organization Berlin Germany Centre for Epidemic Response and Innovation (CERI) School for Data Science and Computational Thinking Stellenbosch University Stellenbosch South Africa African Institute for Mathematical Sciences (AIMS) South Africa Muizenberg Cape Town South Africa Genomics England London United Kingdom Scripps Research La Jolla CA United States Department of Biosystems Science and Engineering ETH Zürich Basel Switzerland Swiss Institute of Bioinformatics Lausanne Switzerland The Ethox Centre Nuffield
Infectious disease threats to individual and public health are numerous, varied and frequently unexpected. Artificial intelligence (AI) and related technologies, which are already supporting human decision making in e...
来源: 评论
Prediction and Prevention of Pandemics via Graphical Model Inference and Convex programming
arXiv
收藏 引用
arXiv 2021年
作者: Krechetov, Mikhail Sikaroudi, Amir Mohammad Esmaieeli Efrat, Alon Polishchuk, Valentin Chertkov, Michael Skolkovo Institute of Science and Technology Moscow121205 Russia University of Arizona Department of Computer Science TucsonAZ85721 United States University of Arizona Program in Applied Mathematics TucsonAZ85721 United States Linköping Univeristy Communications and Transport Systems Norrkoping60174 Sweden University of Arizona Department of Mathematics TucsonAZ85721 United States
Hard-to-predict bursts of COVID-19 pandemic revealed significance of statistical modeling which would resolve spatio-temporal correlations over geographical areas, for example spread of the infection over a city with ... 详细信息
来源: 评论
Prediction and Prevention of Pandemics via Graphical Model Inference and Convexprogramming
Research Square
收藏 引用
Research Square 2021年
作者: Krechetov, Mikhail Sikaroudi, Amir Mohammad Esmaieeli Efrat, Alon Polishchuk, Valentin Chertkov, Michael Skolkovo Institute of Science and Technology Center for Energy Science and Technology Moscow121205 Russia University of Arizona Department of Computer Science TucsonAZ85721 United States University of Arizona Program in Applied Mathematics TucsonAZ85721 United States Linkoping Univeristy Communications and Transport Systems Norrkoping60174 Sweden University of Arizona Department of Mathematics TucsonAZ85721 United States
Hard-to-predict bursts of COVID-19 pandemic revealed significance of statistical modeling which would resolve spatio-temporal correlations over geographical areas, for example spread of the infection over a city with ... 详细信息
来源: 评论
Automating the Practice of science – Opportunities, Challenges, and Implications
arXiv
收藏 引用
arXiv 2024年
作者: Musslick, Sebastian Bartlett, Laura K. Chandramouli, Suyog H. Dubova, Marina Gobet, Fernand Griffiths, Thomas L. Hullman, Jessica King, Ross D. Nathan Kutz, J. Lucas, Christopher G. Mahesh, Suhas Pestilli, Franco Sloman, Sabina J. Holmes, William R. Institute of Cognitive Science Osnabrück University Osnabrück49090 Germany Department of Cognitive Linguistic & Psychological Sciences Brown University ProvidenceRI02912 United States Centre for Philosophy of Natural and Social Science London School of Economics Lakatos Building Houghton Street LondonWC2A 2AE United Kingdom AaltoFI-00076 Finland Department of Computing Science University of Alberta 8900 114 St NW EdmontonABT6G 2S4 Canada Cognitive Science Program Indiana University 1101 E 10th St BloomingtonIN47405 United States School of Psychology University of Roehampton LondonSW15 4JD United Kingdom Departments of Psychology and Computer Science Princeton University PrincetonNJ United States Department of Computer Science Northwestern University IL United States Department of Chemical Engineering and Biotechnology University of Cambridge CambridgeCB3 0AS United Kingdom Department of Computer Science and Engineering Chalmers University of Technology Gothenburg412 96 Sweden Department of Applied Mathematics and Electrical and Computer Engineering University of Washington Seattle98195 United States School of Informatics University of Edinburgh 10 Crichton St. EH8 9AB United Kingdom Department of Materials Science and Engineering University of Toronto Canada Department of Psychology Department of Neuroscience The University of Texas AustinTX United States Department of Computer Science University of Manchester M13 9PL United Kingdom
Automation transformed various aspects of our human civilization, revolutionizing industries and streamlining processes. In the domain of scientific inquiry, automated approaches emerged as powerful tools, holding pro...
来源: 评论