咨询与建议

限定检索结果

文献类型

  • 132 篇 期刊文献
  • 104 篇 会议

馆藏范围

  • 236 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 184 篇 工学
    • 126 篇 计算机科学与技术...
    • 108 篇 软件工程
    • 41 篇 信息与通信工程
    • 39 篇 光学工程
    • 39 篇 生物工程
    • 34 篇 生物医学工程(可授...
    • 18 篇 控制科学与工程
    • 16 篇 电子科学与技术(可...
    • 15 篇 化学工程与技术
    • 12 篇 电气工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 土木工程
    • 5 篇 航空宇航科学与技...
    • 3 篇 材料科学与工程(可...
    • 3 篇 测绘科学与技术
  • 118 篇 理学
    • 54 篇 数学
    • 48 篇 物理学
    • 40 篇 生物学
    • 13 篇 化学
    • 13 篇 统计学(可授理学、...
  • 45 篇 管理学
    • 24 篇 图书情报与档案管...
    • 23 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 23 篇 医学
    • 19 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
    • 5 篇 公共卫生与预防医...
  • 5 篇 法学
    • 4 篇 社会学
  • 4 篇 农学
  • 1 篇 经济学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 7 篇 convolution
  • 7 篇 semantics
  • 6 篇 image segmentati...
  • 6 篇 pixels
  • 5 篇 deep learning
  • 5 篇 generative adver...
  • 4 篇 distillation
  • 4 篇 task analysis
  • 4 篇 motion planning
  • 4 篇 image
  • 4 篇 graph neural net...
  • 4 篇 feature extracti...
  • 4 篇 tumors
  • 4 篇 computer vision
  • 4 篇 image reconstruc...
  • 4 篇 object recogniti...
  • 4 篇 training
  • 3 篇 object detection
  • 3 篇 deep neural netw...
  • 3 篇 neural networks

机构

  • 28 篇 school of artifi...
  • 21 篇 siat branch shen...
  • 15 篇 national laborat...
  • 13 篇 shenzhen key lab...
  • 13 篇 shenzhen key lab...
  • 12 篇 shanghai artific...
  • 11 篇 university of ch...
  • 11 篇 department artif...
  • 10 篇 technische hochs...
  • 9 篇 pattern recognit...
  • 9 篇 department artif...
  • 8 篇 pattern recognit...
  • 7 篇 sensetime resear...
  • 7 篇 pattern recognit...
  • 7 篇 institute of vet...
  • 7 篇 pattern recognit...
  • 7 篇 beijing academy ...
  • 7 篇 department of co...
  • 6 篇 tsinghua univers...
  • 6 篇 state key lab on...

作者

  • 29 篇 breininger katha...
  • 25 篇 maier andreas
  • 22 篇 qiao yu
  • 12 篇 wang yali
  • 12 篇 lin yankai
  • 11 篇 zhou jie
  • 11 篇 li peng
  • 10 篇 dong chao
  • 9 篇 wilm frauke
  • 8 篇 sun maosong
  • 8 篇 ding mingyue
  • 8 篇 liu zhiyuan
  • 8 篇 schlereth maja
  • 8 篇 aubreville marc
  • 7 篇 cai chao
  • 6 篇 qiu jingna
  • 6 篇 klopfleisch robe...
  • 6 篇 yu qiao
  • 6 篇 ma zhanyu
  • 5 篇 yang seung hee

语言

  • 228 篇 英文
  • 6 篇 其他
  • 2 篇 中文
检索条件"机构=Artificial Intelligence & Pattern Recognition Open Lab"
236 条 记 录,以下是111-120 订阅
排序:
On the Safety of Conversational Models: Taxonomy, Dataset, and Benchmark
arXiv
收藏 引用
arXiv 2021年
作者: Sun, Hao Xu, Guangxuan Deng, Jiawen Cheng, Jiale Zheng, Chujie Zhou, Hao Peng, Nanyun Zhu, Xiaoyan Huang, Minlie The CoAI Group DCST Institute for Artificial Intelligence State Key Lab of Intelligent Technology and Systems Beijing National Research Center for Information Science and Technology Tsinghua University Beijing100084 China University of California Los Angeles United States Pattern Recognition Center WeChat AI Tencent Inc China
Dialogue safety problems severely limit the real-world deployment of neural conversational models and have attracted great research interests recently. However, dialogue safety problems remain under-defined and the co... 详细信息
来源: 评论
POS0900 AUTOMATIC SCORING OF EROSION, SYNOVITIS AND BONE OEDEMA IN RHEUMATOID ARTHRITIS USING DEEP LEARNING ON HAND MAGNETIC RESONANCE IMAGING
收藏 引用
Annals of the Rheumatic Diseases 2023年 82卷 758-759页
作者: M. Schlereth A. Kleyer J. Utz L. Folle S. Bayat F. Fagni I. Minopoulou K. Tascilar J. Taubmann M. Uder T. Heimann J. Qiu G. Schett K. Breininger D. Simon Department Artificial Intelligence in Biomedical Engineering Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen Germany Department of Internal Medicine 3 - Rheumatology and Immunology Friedrich-Alexander Universität Erlangen-Nürnberg and University Hospital Erlangen Erlangen Germany Deutsches Zentrum Immuntherapie (DZI) Friedrich-Alexander Universität Erlangen-Nürnberg and University Hospital Erlangen Erlangen Germany Pattern Recognition Lab Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen Germany Institute of Radiology Friedrich-Alexander Universität Erlangen-Nürnberg and University Hospital Erlangen Erlangen Germany Digital Technology and Innovation Siemens Healthcare GmbH Erlangen Germany
Background Rheumatoid Arthritis (RA) Magnetic Resonance Imaging (MRI) scoring system (RAMRIS) [1] is used to manually assess severity of disease activity and monitor treatment response, but it is dependent on observer...
来源: 评论
GPCA: A probabilistic framework for Gaussian process embedded channel attention
arXiv
收藏 引用
arXiv 2020年
作者: Xie, Jiyang Ma, Zhanyu Chang, Dongliang Zhang, Guoqiang Guo, Jun Pattern Recognition and Intelligent System Lab. School of Artificial Intelligence Beijing University of Posts and Telecommunications China School of Electrical and Data Engineering University of Technology Sydney Australia
Channel attention mechanisms have been commonly applied in many visual tasks for effective performance improvement. It is able to reinforce the informative channels as well as to suppress the useless channels. Recentl... 详细信息
来源: 评论
N-Omniglot, a large-scale neuromorphic dataset for spatio-temporal sparse few-shot learning
arXiv
收藏 引用
arXiv 2021年
作者: Li, Yang Dong, Yiting Zhao, Dongcheng Zeng, Yi Brain-inspired Cognitive Intelligence Lab Institute of Automation Chinese Academy of Sciences Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China School of Future Technology University of Chinese Academy of Sciences Beijing China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Shanghai China
Few-shot learning (learning with a few samples) is one of the most important cognitive abilities of the human brain. However, the current artificial intelligence systems meet difficulties in achieving this ability. Si... 详细信息
来源: 评论
Effective and robust detection of adversarial examples via benford-fourier coefficients
arXiv
收藏 引用
arXiv 2020年
作者: Ma, Chengcheng Wu, Baoyuan Xu, Shibiao Fan, Yanbo Zhang, Yong Zhang, Xiaopeng Li, Zhifeng School of Artificial Intelligence Chinese Academy of Sciences University of Chinese Academy of Sciences National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Tencent AI Lab China
Adversarial examples have been well known as a serious threat to deep neural networks (DNNs). In this work, we study the detection of adversarial examples, based on the assumption that the output and internal response... 详细信息
来源: 评论
Multi-axis vision transformer for medical image segmentation
收藏 引用
Engineering Applications of artificial intelligence 2025年 158卷
作者: Abdul Rehman Khan Asifullah Khan Pattern Recognition Lab Department of Computer & Information Sciences Pakistan Institute of Engineering & Applied Sciences Nilore Islamabad 45650 Pakistan PIEAS Artificial Intelligence Center (PAIC) Pakistan Institute of Engineering & Applied Sciences Nilore Islamabad 45650 Pakistan Center for Mathematical Sciences Pakistan Institute of Engineering & Applied Sciences Nilore Islamabad 45650 Pakistan
Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) have shown remarkable success in medical image segmentation, but individually, they struggle to capture both local and global contexts. To address th...
来源: 评论
DiffRenderGAN: Addressing Training Data Scarcity in Deep Segmentation Networks for Quantitative Nanomaterial Analysis through Differentiable Rendering and Generative Modelling
arXiv
收藏 引用
arXiv 2025年
作者: Possart, Dennis Mill, Leonid Vollnhals, Florian Hildebrand, Tor Suter, Peter Hoffmann, Mathis Utz, Jonas Augsburger, Daniel Thies, Mareike Wu, Mingxuan Wagner, Fabian Sarau, George Christiansen, Silke Breininger, Katharina Department Artificial Intelligence in Biomedical Engineering Friedrich-Alexander-University Erlangen-Nürnberg Erlangen91052 Germany Pattern Recognition Lab Friedrich-Alexander-University Erlangen-Nürnberg Erlangen91058 Germany Institute for Nanotechnology and Correlative Microscopy Forchheim91301 Germany Lucid Concepts AG Zurich8005 Switzerland Correlative Microscopy and Materials Data Fraunhofer Institute for Ceramic Technologies and Systems Forchheim91301 Germany Institute of Experimental Physics Freie Universität Berlin Berlin91301 Germany Emeritus-Gruppe Leuchs Max Planck Institute for the Science of Light Erlangen91058 Germany Center for AI and Data Science Julius-Maximilians-University Würzburg Würzburg97074 Germany MIRA Vision Microscopy GmbH Göggingen73037 Germany
Nanomaterials exhibit distinctive properties governed by parameters such as size, shape, and surface characteristics, which critically influence their applications and interactions across technological, biological, an... 详细信息
来源: 评论
Learning Attentive Pairwise Interaction for Fine-Grained Classification
arXiv
收藏 引用
arXiv 2020年
作者: Zhuang, Peiqin Wang, Yali Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Fine-grained classification is a challenging problem, due to subtle differences among highly-confused categories. Most approaches address this difficulty by learning discriminative representation of individual input i... 详细信息
来源: 评论
Fast Texture Synthesis via Pseudo Optimizer
Fast Texture Synthesis via Pseudo Optimizer
收藏 引用
Conference on Computer Vision and pattern recognition (CVPR)
作者: Wu Shi Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Texture synthesis using deep neural networks can generate high quality and diversified textures. However, it usually requires a heavy optimization process. The following works accelerate the process by using feed-forw... 详细信息
来源: 评论
Smallbignet: Integrating core and contextual views for video classification
arXiv
收藏 引用
arXiv 2020年
作者: Li, Xianhang Wang, Yali Zhou, Zhipeng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Temporal convolution has been widely used for video classification. However, it is performed on spatio-temporal contexts in a limited view, which often weakens its capacity of learning video representation. To allevia... 详细信息
来源: 评论