咨询与建议

限定检索结果

文献类型

  • 132 篇 期刊文献
  • 104 篇 会议

馆藏范围

  • 236 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 184 篇 工学
    • 126 篇 计算机科学与技术...
    • 108 篇 软件工程
    • 41 篇 信息与通信工程
    • 39 篇 光学工程
    • 39 篇 生物工程
    • 34 篇 生物医学工程(可授...
    • 18 篇 控制科学与工程
    • 16 篇 电子科学与技术(可...
    • 15 篇 化学工程与技术
    • 12 篇 电气工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 土木工程
    • 5 篇 航空宇航科学与技...
    • 3 篇 材料科学与工程(可...
    • 3 篇 测绘科学与技术
  • 118 篇 理学
    • 54 篇 数学
    • 48 篇 物理学
    • 40 篇 生物学
    • 13 篇 化学
    • 13 篇 统计学(可授理学、...
  • 45 篇 管理学
    • 24 篇 图书情报与档案管...
    • 23 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 23 篇 医学
    • 19 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
    • 5 篇 公共卫生与预防医...
  • 5 篇 法学
    • 4 篇 社会学
  • 4 篇 农学
  • 1 篇 经济学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 7 篇 convolution
  • 7 篇 semantics
  • 6 篇 image segmentati...
  • 6 篇 pixels
  • 5 篇 deep learning
  • 5 篇 generative adver...
  • 4 篇 distillation
  • 4 篇 task analysis
  • 4 篇 motion planning
  • 4 篇 image
  • 4 篇 graph neural net...
  • 4 篇 feature extracti...
  • 4 篇 tumors
  • 4 篇 computer vision
  • 4 篇 image reconstruc...
  • 4 篇 object recogniti...
  • 4 篇 training
  • 3 篇 object detection
  • 3 篇 deep neural netw...
  • 3 篇 neural networks

机构

  • 28 篇 school of artifi...
  • 21 篇 siat branch shen...
  • 15 篇 national laborat...
  • 13 篇 shenzhen key lab...
  • 13 篇 shenzhen key lab...
  • 12 篇 shanghai artific...
  • 11 篇 university of ch...
  • 11 篇 department artif...
  • 10 篇 technische hochs...
  • 9 篇 pattern recognit...
  • 9 篇 department artif...
  • 8 篇 pattern recognit...
  • 7 篇 sensetime resear...
  • 7 篇 pattern recognit...
  • 7 篇 institute of vet...
  • 7 篇 pattern recognit...
  • 7 篇 beijing academy ...
  • 7 篇 department of co...
  • 6 篇 tsinghua univers...
  • 6 篇 state key lab on...

作者

  • 29 篇 breininger katha...
  • 25 篇 maier andreas
  • 22 篇 qiao yu
  • 12 篇 wang yali
  • 12 篇 lin yankai
  • 11 篇 zhou jie
  • 11 篇 li peng
  • 10 篇 dong chao
  • 9 篇 wilm frauke
  • 8 篇 sun maosong
  • 8 篇 ding mingyue
  • 8 篇 liu zhiyuan
  • 8 篇 schlereth maja
  • 8 篇 aubreville marc
  • 7 篇 cai chao
  • 6 篇 qiu jingna
  • 6 篇 klopfleisch robe...
  • 6 篇 yu qiao
  • 6 篇 ma zhanyu
  • 5 篇 yang seung hee

语言

  • 228 篇 英文
  • 6 篇 其他
  • 2 篇 中文
检索条件"机构=Artificial Intelligence & Pattern Recognition Open Lab"
236 条 记 录,以下是61-70 订阅
排序:
Low-Resolution Action recognition for Tiny Actions Challenge
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Boyu Qiao, Yu Wang, Yali ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Shanghai AI Laboratory Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Tiny Actions Challenge focuses on understanding human activities in real-world surveillance. Basically, there are two main difficulties for activity recognition in this scenario. First, human activities are often reco... 详细信息
来源: 评论
Learning Multi-expert Distribution Calibration for Long-tailed Video Classification
arXiv
收藏 引用
arXiv 2022年
作者: Hu, Yufan Gao, Junyu Xu, Changsheng University of Science and Technology Beijing Beijing100083 China Peng Cheng Laboratory Shenzhen518055 China National Lab of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China
Most existing state-of-the-art video classification methods assume that the training data obey a uniform distribution. However, video data in the real world typically exhibit an imbalanced long-tailed class distributi... 详细信息
来源: 评论
UniFormer: Unifying Convolution and Self-attention for Visual recognition
arXiv
收藏 引用
arXiv 2022年
作者: Li, Kunchang Wang, Yali Zhang, Junhao Gao, Peng Song, Guanglu Liu, Yu Li, Hongsheng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China University of Chinese Academy of Sciences Beijing100049 China Shanghai Artificial Intelligence Laboratory Shanghai200232 China National University of Singapore Singapore Shanghai Artificial Intelligence Laboratory China SenseTime Research China The Chinese University of Hong Kong Hong Kong
It is a challenging task to learn discriminative representation from images and videos, due to large local redundancy and complex global dependency in these visual data. Convolution neural networks (CNNs) and vision t... 详细信息
来源: 评论
TLRM: Task-level Relation Module for GNN-based Few-Shot Learning
TLRM: Task-level Relation Module for GNN-based Few-Shot Lear...
收藏 引用
IEEE Visual Communications and Image Processing (VCIP)
作者: Yurong Guo Zhanyu Ma Xiaoxu Li Yuan Dong Pattern Recognition and Intelligent System Lab. Beijing University of Posts and Telecommunications Beijing China Beijing Academy of Artificial Intelligence Beijing China Lanzhou University of Technology Lanzhou China
Recently, graph neural networks (GNNs) have shown powerful ability to handle few-shot classification problem, which aims at classifying unseen samples when trained with limited labeled samples per class. GNN-based few... 详细信息
来源: 评论
Fetal Re-Identification in Multiple Pregnancy Ultrasound Images Using Deep Learning
Fetal Re-Identification in Multiple Pregnancy Ultrasound Ima...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Elisabeth Gabler Michael Nissen Thomas R. Altstidl Adriana Titzmann Kai Packhäuser Andreas Maier Peter A. Fasching Bjoern M. Eskofier Heike Leutheuser Department Artificial Intelligence in Biomedical Engineering Machine Learning and Data Analytics (MaD) Lab Friedrich-Alexander-Universität Erlangen-Nurnberg (FAU) Erlangen Germany Department of Gynecology and Obstetrics Erlangen University Hospital Friedrich-Alexander-Universität Erlangen-Nurnberg (FAU) Erlangen Germany Department of Computer Science Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nurnberg (FAU) Erlangen Germany
Ultrasound examinations during pregnancy can detect abnormal fetal development, which is a leading cause of perinatal mortality. In multiple pregnancies, the position of the fetuses may change between examinations. Th...
来源: 评论
Continual relation learning via episodic memory activation and reconsolidation  58
Continual relation learning via episodic memory activation a...
收藏 引用
58th Annual Meeting of the Association for Computational Linguistics, ACL 2020
作者: Han, Xu Dai, Yi Gao, Tianyu Lin, Yankai Liu, Zhiyuan Li, Peng Sun, Maosong Zhou, Jie State Key Lab on Intelligent Technology and Systems Institute for Artificial Intelligence Department of Computer Science and Technology Tsinghua University Beijing China Pattern Recognition Center WeChat AI Tencent Inc. China
Continual relation learning aims to continually train a model on new data to learn incessantly emerging novel relations while avoiding catastrophically forgetting old relations. Some pioneering work has proved that st... 详细信息
来源: 评论
Selecting Stickers in open-Domain Dialogue through Multitask Learning
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Zhexin Zhu, Yeshuang Fei, Zhengcong Zhang, Jinchao Zhou, Jie The CoAI Group DCST China Institute for Artificial Intelligence China State Key Lab of Intelligent Technology and Systems China Beijing National Research Center for Information Science and Technology China Tsinghua University Beijing100084 China Pattern Recognition Center WeChat AI Tencent Inc China
With the increasing popularity of online chatting, stickers are becoming important in our online communication. Selecting appropriate stickers in open-domain dialogue requires a comprehensive understanding of both dia... 详细信息
来源: 评论
CTRLEval: An Unsupervised Reference-Free Metric for Evaluating Controlled Text Generation
arXiv
收藏 引用
arXiv 2022年
作者: Ke, Pei Zhou, Hao Lin, Yankai Li, Peng Zhou, Jie Zhu, Xiaoyan Huang, Minlie The CoAI group DCST Institute for Artificial Intelligence State Key Lab of Intelligent Technology and Systems Beijing National Research Center for Information Science and Technology Tsinghua University Beijing100084 China Pattern Recognition Center WeChat AI Tencent Inc. China Tsinghua University China
Existing reference-free metrics have obvious limitations for evaluating controlled text generation models. Unsupervised metrics can only provide a task-agnostic evaluation result which correlates weakly with human jud...
来源: 评论
Active Universal Domain Adaptation
Active Universal Domain Adaptation
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Xinhong Ma Junyu Gao Changsheng Xu National Lab of Pattern Recognition (NLPR) Institute of Automation Chinese Academy of Sciences (CASIA) School of Artificial Intelligence University of Chinese Academy of Sciences (UCAS) Peng Cheng Laboratory Shenzhen China
Most unsupervised domain adaptation methods rely on rich prior knowledge about the source-target label set relationship, and they cannot recognize categories beyond the source classes, which limits their applicability... 详细信息
来源: 评论
Does proprietary software still offer protection of intellectual property in the age of machine learning? A case study using dual energy CT data
arXiv
收藏 引用
arXiv 2021年
作者: Maier, Andreas Yang, Seung Hee Maleki, Farhad Muthukrishnan, Nikesh Forghani, Reza Pattern Recognition Lab FAU Erlangen-Nürnberg Germany Department Artificial Intelligence in Medical Engineering FAU Erlangen-Nürnberg Germany McGill University Hospital McGill University Canada
In the domain of medical image processing, medical device manufacturers protect their intellectual property in many cases by shipping only compiled software, i.e. binary code which can be executed but is difficult to ... 详细信息
来源: 评论