咨询与建议

限定检索结果

文献类型

  • 2,644 篇 期刊文献
  • 1,883 篇 会议
  • 62 册 图书

馆藏范围

  • 4,589 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,017 篇 工学
    • 2,015 篇 计算机科学与技术...
    • 1,654 篇 软件工程
    • 605 篇 信息与通信工程
    • 581 篇 控制科学与工程
    • 489 篇 电气工程
    • 461 篇 生物工程
    • 355 篇 光学工程
    • 354 篇 生物医学工程(可授...
    • 304 篇 电子科学与技术(可...
    • 222 篇 机械工程
    • 158 篇 化学工程与技术
    • 132 篇 仪器科学与技术
    • 119 篇 动力工程及工程热...
    • 114 篇 材料科学与工程(可...
    • 95 篇 土木工程
    • 85 篇 建筑学
  • 1,770 篇 理学
    • 891 篇 数学
    • 532 篇 物理学
    • 528 篇 生物学
    • 334 篇 统计学(可授理学、...
    • 191 篇 化学
    • 185 篇 系统科学
  • 742 篇 管理学
    • 481 篇 管理科学与工程(可...
    • 297 篇 图书情报与档案管...
    • 223 篇 工商管理
  • 293 篇 医学
    • 253 篇 临床医学
    • 203 篇 基础医学(可授医学...
    • 133 篇 药学(可授医学、理...
    • 90 篇 公共卫生与预防医...
  • 122 篇 法学
    • 106 篇 社会学
  • 76 篇 经济学
  • 46 篇 农学
  • 33 篇 教育学
  • 9 篇 军事学
  • 7 篇 文学
  • 3 篇 艺术学

主题

  • 182 篇 artificial intel...
  • 125 篇 deep learning
  • 96 篇 machine learning
  • 86 篇 accuracy
  • 86 篇 training
  • 82 篇 feature extracti...
  • 79 篇 laboratories
  • 73 篇 computational mo...
  • 66 篇 real-time system...
  • 63 篇 semantics
  • 62 篇 computer science
  • 62 篇 optimization
  • 61 篇 reinforcement le...
  • 61 篇 neural networks
  • 61 篇 convolutional ne...
  • 48 篇 data models
  • 47 篇 image segmentati...
  • 47 篇 robot sensing sy...
  • 45 篇 computer vision
  • 42 篇 deep neural netw...

机构

  • 70 篇 moe key lab of a...
  • 67 篇 department of co...
  • 62 篇 shanghai artific...
  • 46 篇 department of el...
  • 44 篇 college of compu...
  • 42 篇 peng cheng labor...
  • 42 篇 key laboratory o...
  • 41 篇 school of automa...
  • 39 篇 computer science...
  • 33 篇 department of el...
  • 33 篇 computer science...
  • 28 篇 shenzhen institu...
  • 27 篇 institute of art...
  • 27 篇 school of artifi...
  • 25 篇 department of co...
  • 25 篇 school of artifi...
  • 25 篇 state key labora...
  • 25 篇 computer science...
  • 24 篇 school of electr...
  • 24 篇 school of artifi...

作者

  • 65 篇 zhao hai
  • 35 篇 zhang zhuosheng
  • 27 篇 daniela rus
  • 24 篇 yu kai
  • 23 篇 zhao jian
  • 21 篇 seifedine kadry
  • 20 篇 shen furao
  • 19 篇 guizani mohsen
  • 18 篇 golland polina
  • 18 篇 li zuchao
  • 17 篇 huang jianwei
  • 16 篇 samek wojciech
  • 16 篇 wang wei
  • 15 篇 ghojogh benyamin
  • 15 篇 jacek m. zurada
  • 14 篇 lynne e. parker
  • 14 篇 shi guangming
  • 14 篇 min gu
  • 14 篇 han zhu
  • 14 篇 ji rongrong

语言

  • 4,058 篇 英文
  • 489 篇 其他
  • 45 篇 中文
  • 2 篇 德文
  • 2 篇 法文
  • 1 篇 阿拉伯文
  • 1 篇 西班牙文
检索条件"机构=Artificial Intelligence Laboratory and Department of Electrical Engineering and Computer Science"
4589 条 记 录,以下是101-110 订阅
排序:
Evolutionary Optimization Methods for High-Dimensional Expensive Problems:A Survey
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2024年 第5期11卷 1092-1105页
作者: MengChu Zhou Meiji Cui Dian Xu Shuwei Zhu Ziyan Zhao Abdullah Abusorrah Department of Electrical and Computer Engineering New Jersey Institute of TechnologyNewarkNJ 07102 USA School of Information and Electronic Engineering Zhejiang Gongshang UniversityHangzhou 310018China School of Intelligent Manufacturing Nanjing University of Science and TechnologyNanjing 210094China Institute of Systems Engineering Macao University of Science and TechnologyMacao 999078China School of Artificial Intelligence and Computer Jiangnan UniversityWuxi 214122China School of Information Science and Engineering Northeastern UniversityShenyang 110819China Center of Research Excellence in Renewable Energy and Power Systems Department of Electrical and Computer EngineeringFaculty of EngineeringKing Abdulaziz UniversityJeddah 21589Saudi Arabia K.A.CARE Energy Research and Innovation Center King Abdulaziz UniversityJeddah 21589Saudi Arabia
Evolutionary computation is a rapidly evolving field and the related algorithms have been successfully used to solve various real-world optimization *** past decade has also witnessed their fast progress to solve a cl... 详细信息
来源: 评论
Fractional Order Differential Evolution
收藏 引用
IEEE Transactions on Evolutionary Computation 2024年 第3期29卷 1-1页
作者: Wang, Kaiyu Gao, Shangce Zhou, MengChu Zhan, Zhi-Hui Cheng, Jiujun Faculty of Engineering University of Toyama Toyama-shi Japan Department of Electrical and Computer Engineering New Jersey Institute of Technology Newark NJ USA College of Artificial Intelligence Nankai University Tianjin China Ministry of Education Key Laboratory of Embedded System and Service Computing Tongji University Shanghai China
Differential evolution (DE) is a widely recognized method to solve complex optimization problems as shown by many researchers. Yet, non-adaptive versions of DE suffer from insufficient exploration ability and uses no ... 详细信息
来源: 评论
Building Consensus in Group Decision-Making with Intuitionistic Reciprocal Preference Relations: An Analysis of Various Protocols of Information Granularity Distribution
Building Consensus in Group Decision-Making with Intuitionis...
收藏 引用
2024 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2024
作者: Gonzalez-Quesada, Juan Carlos Cabrerizo, Francisco Javier Herrera-Viedma, Enrique Pedrycz, Witold Andalusian Research Institute in Data Science and Computational Intelligence DaSCI University of Granada Department of Computer Science and Artificial Intelligence Granada18071 Spain University of Alberta Department of Electrical & Computer Engineering EdmontonABT6R 2V4 Canada
On the one hand, to model experts' preferences in group decision-making, intuitionistic reciprocal preference relations have widely been used because they allow for accommodating hesitation degrees, which are inhe... 详细信息
来源: 评论
Continuous-Time Prediction of Industrial Paste Thickener System With Differential ODE-Net
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2022年 第4期9卷 686-698页
作者: Zhaolin Yuan Xiaorui Li Di Wu Xiaojuan Ban Nai-Qi Wu Hong-Ning Dai Hao Wang the Beijing Advanced Innovation Center for Materials Genome Engineering Institute of Artificial IntelligenceBeijing Key Laboratory of Knowledge Engineering for Materials ScienceSchool of Computer and Communication EngineeringUniversity of Science and Technology Beijing the Department of ICT and Natural Science Norwegian University of Science and Technology IEEE the Institute of Systems Engineering and Collaborative Laboratory for Intelligent Science and SystemsMacao University of Science and Technology the Department of Computing and Decision Sciences Lingnan University the Department of Computer Science Norwegian University of Science and Technology
It is crucial to predict the outputs of a thickening system,including the underflow concentration(UC)and mud pressure,for optimal control of the *** proliferation of industrial sensors and the availability of thickeni... 详细信息
来源: 评论
Scalable Multi-Agent Reinforcement Learning for Residential Load Scheduling Under Data Governance
IEEE Transactions on Industrial Cyber-Physical Systems
收藏 引用
IEEE Transactions on Industrial Cyber-Physical Systems 2025年 3卷 351-361页
作者: Qin, Zhaoming Dong, Nanqing Liu, Di Wang, Zhefan Cao, Junwei EPFL Automatic Control Laboratory Lausanne1015 Switzerland Shanghai Artificial Intelligence Laboratory Shanghai200232 China Tsinghua University Department of Electrical Engineering Beijing100084 China Tsinghua University Beijing National Research Center for Information Science and Technology Beijing100084 China
As a data-driven approach, multi-agent reinforcement learning (MARL) has made remarkable advances in solving cooperative residential load scheduling problems. However, centralized training, the most common paradigm fo... 详细信息
来源: 评论
Discounted Iterative Adaptive Critic Designs With Novel Stability Analysis for Tracking Control
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2022年 第7期9卷 1262-1272页
作者: Mingming Ha Ding Wang Derong Liu School of Automation and Electrical Engineering University of Science and Technology BeijingBeijing 100083China Faculty of Information Technology the Beijing Key Laboratory of Computational Intelligence and Intelligent Systemthe Beijing Laboratory of Smart Environmental Protectionand the Beijing Institute of Artificial IntelligenceBeijing University of TechnologyBeijing 100124China Department of Electrical and Computer Engineering University of Illinois at ChicagoChicago IL 60607 USA IEEE
The core task of tracking control is to make the controlled plant track a desired *** traditional performance index used in previous studies cannot eliminate completely the tracking error as the number of time steps *... 详细信息
来源: 评论
Adaptive Robust Control Integrated With Gaussian Processes for Quadrotors: Enhanced Accuracy, Fault Tolerance and Anti-Disturbance
收藏 引用
IEEE Transactions on Systems, Man, and Cybernetics: Systems 2025年 第5期55卷 3235-3248页
作者: Liang, Weisheng Amer, Abdelhakim Mehndiratta, Mohit Chen, Zheng Yao, Bin Kayacan, Erdal Zhejiang University State Key Laboratory of Fluid Power and Mechatronic Systems Hangzhou310027 China Aarhus University Artificial Intelligence in Robotics Laboratory Department of Electrical and Computer Engineering Aarhus8000 Denmark GIM Robotics Espoo02650 Finland Zhejiang University Ocean College Ocean Research Center of Zhoushan Zhoushan316021 China Purdue University School of Mechanical Engineering West Lafayette47907 United States Department of Electrical Engineering and Information Technology Paderborn33098 Germany
With increasingly challenging applications for quadrotors, higher requirements are emerging for tracking accuracy and safety. While high accuracy is a prerequisite for complex tasks, safety is ensured through toleranc... 详细信息
来源: 评论
GRU-Based Winner Subcarrier Detection in Frequency Domain Contention  24
GRU-Based Winner Subcarrier Detection in Frequency Domain Co...
收藏 引用
7th International Conference on Information science and Systems, ICISS 2024
作者: Yao, Shumin Zhao, Qinglin Xu, Zezhou Feng, Li Li, Guanghui Tian, Liwei Sun, Yi School of Computer Science and Engineering Macau University of Science and Technology China Department of Broadband Communication Pengcheng Laboratory China School of Artificial Intelligence and Computer Science Jiangnan University China Department of Computer Guangdong University of Science and Technology China Institute of Computing Technology Chinese Academy of Sciences China
Single-carrier frequency domain contention (S-FDC) is an efficient wireless contention mechanism based on orthogonal frequency-division multiplexing (OFDM). In each round of S-FDC, each node randomly selects and signa... 详细信息
来源: 评论
Point Cloud Classification Using Content-Based Transformer via Clustering in Feature Space
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2024年 第1期11卷 231-239页
作者: Yahui Liu Bin Tian Yisheng Lv Lingxi Li Fei-Yue Wang the State Key Laboratory for Management and Control of Complex Systems Institute of AutomationChinese Academy of SciencesBeijing 100190 the School of Artificial Intelligence University of Chinese Academy of SciencesBeijing 100190 IEEE the Transportation and Autonomous Systems Institute(TASI)and the Department of Electrical and Computer Engineering Purdue School of Engineering and TechnologyIndiana University-Purdue University Indianapolis(IUPUI)Indianapolis 46202 USA
Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to est... 详细信息
来源: 评论
Machine Learning Prediction Models of Optimal Time for Aortic Valve Replacement in Asymptomatic Patients
收藏 引用
Intelligent Automation & Soft Computing 2023年 第7期37卷 455-470页
作者: Salah Alzghoul Othman Smadi Ali Al Bataineh Mamon Hatmal Ahmad Alamm Biomedical Engineering Department The Hashemite UniversityZarqaJordan Department of Electrical and Computer Engineering Norwich UniversityNorthfieldVermont05663USA Department of Biochemistry and Molecular Biology The Hashemite UniversityZarqaJordan National Centre for Big Data Science and Artificial Intelligence AmmanJordan
Currently,the decision of aortic valve replacement surgery time for asymptomatic patients with moderate-to-severe aortic stenosis(AS)is made by healthcare professionals based on the patient’s clinical biometric recor... 详细信息
来源: 评论