咨询与建议

限定检索结果

文献类型

  • 200 篇 期刊文献
  • 158 篇 会议
  • 2 册 图书

馆藏范围

  • 360 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 209 篇 工学
    • 136 篇 计算机科学与技术...
    • 125 篇 软件工程
    • 47 篇 控制科学与工程
    • 41 篇 信息与通信工程
    • 39 篇 光学工程
    • 35 篇 生物工程
    • 32 篇 生物医学工程(可授...
    • 22 篇 电气工程
    • 14 篇 机械工程
    • 13 篇 化学工程与技术
    • 10 篇 电子科学与技术(可...
    • 8 篇 仪器科学与技术
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 6 篇 交通运输工程
    • 5 篇 动力工程及工程热...
    • 5 篇 网络空间安全
  • 115 篇 理学
    • 54 篇 数学
    • 44 篇 物理学
    • 38 篇 生物学
    • 17 篇 统计学(可授理学、...
    • 13 篇 化学
    • 8 篇 系统科学
  • 52 篇 管理学
    • 27 篇 管理科学与工程(可...
    • 25 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 23 篇 医学
    • 19 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 经济学
  • 3 篇 教育学
  • 1 篇 农学

主题

  • 33 篇 artificial intel...
  • 29 篇 intelligent robo...
  • 25 篇 robot vision sys...
  • 24 篇 computer vision
  • 18 篇 laboratories
  • 15 篇 robotics and aut...
  • 13 篇 computer science
  • 13 篇 robot sensing sy...
  • 13 篇 robustness
  • 12 篇 cameras
  • 12 篇 training
  • 11 篇 shape
  • 10 篇 manipulators
  • 9 篇 semantics
  • 7 篇 face recognition
  • 7 篇 computational mo...
  • 7 篇 image reconstruc...
  • 6 篇 object detection
  • 6 篇 deformable model...
  • 6 篇 vehicle detectio...

机构

  • 35 篇 shenzhen institu...
  • 20 篇 national enginee...
  • 20 篇 artificial intel...
  • 15 篇 computer vision ...
  • 12 篇 guangdong key la...
  • 9 篇 university of sc...
  • 8 篇 artificial intel...
  • 7 篇 computer vision ...
  • 7 篇 computer vision ...
  • 7 篇 peng cheng labor...
  • 7 篇 heidelberg
  • 6 篇 college of compu...
  • 6 篇 shanghai artific...
  • 6 篇 guangdong provin...
  • 5 篇 department of co...
  • 5 篇 universitat pomp...
  • 5 篇 school of artifi...
  • 5 篇 shanghai ai labo...
  • 5 篇 computer science...
  • 5 篇 university of ch...

作者

  • 32 篇 shen linlin
  • 22 篇 n.p. papanikolop...
  • 13 篇 c.e. smith
  • 11 篇 linlin shen
  • 11 篇 xie weicheng
  • 8 篇 daniela rus
  • 8 篇 timofte radu
  • 8 篇 song siyang
  • 7 篇 bakas spyridon
  • 7 篇 menze bjoern
  • 7 篇 luo cheng
  • 7 篇 scheutz matthias
  • 6 篇 reinke annika
  • 6 篇 o. masoud
  • 6 篇 tian chunwei
  • 6 篇 rus daniela
  • 6 篇 y.v. venkatesh
  • 6 篇 zhang zhaoxiang
  • 6 篇 zhang david
  • 6 篇 zuo wangmeng

语言

  • 333 篇 英文
  • 27 篇 其他
检索条件"机构=Artificial Intelligence Robotics and Vision Laboratory Department of Computer Science"
360 条 记 录,以下是1-10 订阅
排序:
A hybrid feature selection method for text classification using a feature-correlation-based genetic algorithm
收藏 引用
Soft Computing 2024年 第23期28卷 13567-13593页
作者: Farek, Lazhar Benaidja, Amira Computer Science Department University of Guelma Guelma Algeria Computer Science Department University of Setif 1 Setif Algeria Laboratory of Vision and Artificial Intelligence - LAVIA Larbi Tebessi University Tebessa Algeria
This paper introduces a new hybrid method to address the issue of redundant and irrelevant features selected by filter-based methods for text classification. The method utilizes an enhanced genetic algorithm called &q... 详细信息
来源: 评论
Support vector machine with discriminative low-rank embedding
收藏 引用
CAAI Transactions on intelligence Technology 2024年 第5期9卷 1249-1262页
作者: Guangfei Liang Zhihui Lai Heng Kong Computer Vision Institute College of Computer Science and Software EngineeringShenzhen UniversityShenzhenChina Shenzhen Institute of Artificial Intelligence and Robotics for Society ShenzhenChina Department of Breast and Thyroid Surgery BaoAn Central Hospital of ShenzhenShenzhenChina
Support vector machine(SVM)is a binary classifier widely used in machine ***,neglecting the latent data structure in previous SVM can limit the performance of SVM and its *** address this issue,the authors propose a n... 详细信息
来源: 评论
Dual Encoder-Decoder Shifted Window-Based Transformer Network for Polyp Segmentation with Self-Learning Approach
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on artificial intelligence 2024年 第7期5卷 3456-3469页
作者: Lijin, P. Ullah, Mohib Vats, Anuja Cheikh, Faouzi Alaya Kumar, Santhosh Nair, Madhu S. Cochin University of Science and Technology Artificial Intelligence & Computer Vision Laboratory Department of Computer Science Kerala Kochi682022 India Norwegian University of Science and Technology Gjovik2815 Norway Norwegian University of Science and Technology Norwegian Colour and Visual Computing Laboratory Gjovik2815 Norway
According to WHO reports, cancer is the leading cause of death worldwide. The second most prevalent cause of cancer-related death in both men and women is colorectal cancer (CRC). One potential approach for reducing t... 详细信息
来源: 评论
Exploiting autoencoder’s weakness to generate pseudo anomalies
收藏 引用
Neural Computing and Applications 2024年 第23期36卷 14075-14091页
作者: Astrid, Marcella Zaheer, Muhammad Zaigham Aouada, Djamila Lee, Seung-Ik Department of Artificial Intelligence University of Science and Technology Daejeon34113 Korea Republic of Field Robotics Research Section Electronics and Telecommunications Research Institute Daejeon34129 Korea Republic of Interdisciplinary Centre for Security Reliability and Trust University of Luxembourg Luxembourg1855 Luxembourg Department of Computer Vision Mohamed Bin Zayed University of Artificial Intelligence Abu Dhabi United Arab Emirates
Due to the rare occurrence of anomalous events, a typical approach to anomaly detection is to train an autoencoder (AE) with normal data only so that it learns the patterns or representations of the normal training da... 详细信息
来源: 评论
Towards Combating Frequency Simplicity-biased Learning for Domain Generalization  38
Towards Combating Frequency Simplicity-biased Learning for D...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: He, Xilin Hu, Jingyu Lin, Qinliang Luo, Cheng Xie, Weicheng Song, Siyang Khan, Muhammad Haris Shen, Linlin Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University China Shenzhen Institute of Artificial Intelligence and Robotics for Society China Guangdong Provincial Key Laboratory of Intelligent Information Processing China University of Exeter United Kingdom Mohamed bin Zayed University of Artificial Intelligence United Arab Emirates
Domain generalization methods aim to learn transferable knowledge from source domains that can generalize well to unseen target domains. Recent studies show that neural networks frequently suffer from a simplicity-bia...
来源: 评论
HairDiffusion: Vivid Multi-Colored Hair Editing via Latent Diffusion  38
HairDiffusion: Vivid Multi-Colored Hair Editing via Latent D...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Zeng, Yu Zhang, Yang Liu, Jiachen Shen, Linlin Deng, Kaijun He, Weizhao Wang, Jinbao Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University China Shenzhen Institute of Artificial Intelligence and Robotics for Society China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Guangdong Provincial Key Laboratory of Intelligent Information Processing China
Hair editing is a critical image synthesis task that aims to edit hair color and hairstyle using text descriptions or reference images, while preserving irrelevant attributes (e.g., identity, background, cloth). Many ...
来源: 评论
Video Corpus Moment Retrieval with Query-specific Context Learning and Progressive Localization
收藏 引用
IEEE Transactions on Circuits and Systems for Video Technology 2025年 第6期35卷 5659-5670页
作者: Zhang, Long Song, Peipei Duan, Zhangling Wang, Shuo Chang, Xiaojun Yang, Xun School of Information Science and Technology Hefei230026 China Hefei Comprehensive National Science Center Institute of Artificial Intelligence Hefei230026 China University of Science and Technology of China School of Information Science and Technology Hefei230026 China Department of Computer Vision Abu Dhabi United Arab Emirates University of Science and Technology of China MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition China
Video corpus moment retrieval (VCMR) aims to retrieve a moment from a large corpus of untrimmed videos corresponding to a given language query. However, existing methods often fall short due to their reliance on simpl... 详细信息
来源: 评论
Activation Template Matching Loss for Explainable Face Recognition  17
Activation Template Matching Loss for Explainable Face Recog...
收藏 引用
17th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2023
作者: Lin, Huawei Liu, Haozhe Li, Qiufu Shen, Linlin Computer Vision Institute School of Computer Science and Softwre Enginnering Shenzhen University Shenzhen China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen China
Can we construct an explainable face recognition network able to learn a facial part-based feature like eyes, nose, mouth and so forth, without any manual annotation or additionalsion datasets? In this paper, we propo... 详细信息
来源: 评论
LLaVA-Endo:a large language-and-vision assistant for gastrointestinal endoscopy
收藏 引用
Frontiers of computer science 2025年 第4期19卷 121-123页
作者: Jieru YAO Xueran LI Qiang XIE Longfei HAN Yiwen JIA Nian LIU Dingwen ZHANG Junwei HAN School of Automation Northwestern Polytechnical UniversityXi’an 710072China Institute of Artificial Intelligence Hefei Comprehensive National Science CenterHefei 230088China AHU-IAI AI Joint Laboratory Anhui UniversityHefei 230039China Institute of Advanced Technology University of Science and Technology of ChinaHefei 230026China School of Computer and Artificial Intelligence Beijing Technology and Business UniversityBeijing 100048China Department of Gastroenterology The Third Affiliated Hospital of Anhui Medical University(Hefei First People’s Hospital)Hefei 230061China The Computer Vision Department Mohamed Bin Zayed University of Artificial IntelligenceMasdarAbu Dhabi 200120United Arab Emirates Xijing Hospital The Fourth Military Medical UniversityXi’an 710032China
1 Introduction Endoscopy plays a crucial role in the diagnoses and treatment of gastrointestinal(GI)diseases[1],as it helps to identify abnormalities,classify lesion,and determine treatment *** GI endoscopic examinati... 详细信息
来源: 评论
PLIP: Language-Image Pre-training for Person Representation Learning  38
PLIP: Language-Image Pre-training for Person Representation ...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Zuo, Jialong Hong, Jiahao Zhang, Feng Yu, Changqian Zhou, Hanyu Gao, Changxin Sang, Nong Wang, Jingdong National Key Laboratory of Multispectral Information Intelligent Processing Technology School of Artificial Intelligence and Automation Huazhong University of Science and Technology China Skywork AI United States Department of Computer Vision Baidu Inc. China
Language-image pre-training is an effective technique for learning powerful representations in general domains. However, when directly turning to person representation learning, these general pre-training methods suff...
来源: 评论