咨询与建议

限定检索结果

文献类型

  • 200 篇 期刊文献
  • 158 篇 会议
  • 2 册 图书

馆藏范围

  • 360 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 209 篇 工学
    • 136 篇 计算机科学与技术...
    • 125 篇 软件工程
    • 47 篇 控制科学与工程
    • 41 篇 信息与通信工程
    • 39 篇 光学工程
    • 35 篇 生物工程
    • 32 篇 生物医学工程(可授...
    • 22 篇 电气工程
    • 14 篇 机械工程
    • 13 篇 化学工程与技术
    • 10 篇 电子科学与技术(可...
    • 8 篇 仪器科学与技术
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 6 篇 交通运输工程
    • 5 篇 动力工程及工程热...
    • 5 篇 网络空间安全
  • 115 篇 理学
    • 54 篇 数学
    • 44 篇 物理学
    • 38 篇 生物学
    • 17 篇 统计学(可授理学、...
    • 13 篇 化学
    • 8 篇 系统科学
  • 52 篇 管理学
    • 27 篇 管理科学与工程(可...
    • 25 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 23 篇 医学
    • 19 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 经济学
  • 3 篇 教育学
  • 1 篇 农学

主题

  • 33 篇 artificial intel...
  • 29 篇 intelligent robo...
  • 25 篇 robot vision sys...
  • 24 篇 computer vision
  • 18 篇 laboratories
  • 15 篇 robotics and aut...
  • 13 篇 computer science
  • 13 篇 robot sensing sy...
  • 13 篇 robustness
  • 12 篇 cameras
  • 12 篇 training
  • 11 篇 shape
  • 10 篇 manipulators
  • 9 篇 semantics
  • 7 篇 face recognition
  • 7 篇 computational mo...
  • 7 篇 image reconstruc...
  • 6 篇 object detection
  • 6 篇 deformable model...
  • 6 篇 vehicle detectio...

机构

  • 35 篇 shenzhen institu...
  • 20 篇 national enginee...
  • 20 篇 artificial intel...
  • 15 篇 computer vision ...
  • 12 篇 guangdong key la...
  • 9 篇 university of sc...
  • 8 篇 artificial intel...
  • 7 篇 computer vision ...
  • 7 篇 computer vision ...
  • 7 篇 peng cheng labor...
  • 7 篇 heidelberg
  • 6 篇 college of compu...
  • 6 篇 shanghai artific...
  • 6 篇 guangdong provin...
  • 5 篇 department of co...
  • 5 篇 universitat pomp...
  • 5 篇 school of artifi...
  • 5 篇 shanghai ai labo...
  • 5 篇 computer science...
  • 5 篇 university of ch...

作者

  • 32 篇 shen linlin
  • 22 篇 n.p. papanikolop...
  • 13 篇 c.e. smith
  • 11 篇 linlin shen
  • 11 篇 xie weicheng
  • 8 篇 daniela rus
  • 8 篇 timofte radu
  • 8 篇 song siyang
  • 7 篇 bakas spyridon
  • 7 篇 menze bjoern
  • 7 篇 luo cheng
  • 7 篇 scheutz matthias
  • 6 篇 reinke annika
  • 6 篇 o. masoud
  • 6 篇 tian chunwei
  • 6 篇 rus daniela
  • 6 篇 y.v. venkatesh
  • 6 篇 zhang zhaoxiang
  • 6 篇 zhang david
  • 6 篇 zuo wangmeng

语言

  • 333 篇 英文
  • 27 篇 其他
检索条件"机构=Artificial Intelligence Robotics and Vision Laboratory Department of Computer Science"
360 条 记 录,以下是91-100 订阅
排序:
Learning-Based Low-Latency Collaborative Inference for Multi-Branch Models in D2D-Assisted MEC
Learning-Based Low-Latency Collaborative Inference for Multi...
收藏 引用
IEEE Conference on Wireless Communications and Networking
作者: Kai Guo Yilin Xiao Xiaozhen Lu Liang Xiao Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China School of Science and Engineering The Chinese University of Hong Kong Shenzhen China Peng Cheng Laboratory Shenzhen China College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China Department of Information and Communication Engineering Xiamen University Xiamen China
Deploying high-complexity deep neural network (DNN) on mobile devices presents significant challenges, stemming from the conflict between their computationally intensive demands and the constrained computational resou... 详细信息
来源: 评论
IFViT: Interpretable Fixed-Length Representation for Fingerprint Matching via vision Transformer
arXiv
收藏 引用
arXiv 2024年
作者: Qiu, Yuhang Chen, Honghui Dong, Xingbo Lin, Zheng Liao, Iman Yi Tistarelli, Massimo Jin, Zhe The Anhui Provincial Key Laboratory of Artificial Intelligence School of Artificial Intelligence Anhui University Hefei230093 China The Faculty of Engineering Monash University Wellington Road ClaytonVIC3800 Australia The Department of Physics and Information Engineering Fuzhou University Fuzhou350108 China The Department of Electrical and Electronic Engineering University of Hong Kong Pok Fu Lam Hong Kong The School of Computer Science University of Nottingham Malaysia Campus Semenyih43500 Malaysia The Computer Vision Laboratory University of Sassari Sassari07100 Italy
Determining dense feature points on fingerprints used in constructing deep fixed-length representations for accurate matching, particularly at the pixel level, is of significant interest. To explore the interpretabili... 详细信息
来源: 评论
Sim-to-Real for Soft Robots using Differentiable FEM: Recipes for Meshing, Damping, and Actuation
arXiv
收藏 引用
arXiv 2022年
作者: Dubied, Mathieu Michelis, Mike Y. Spielberg, Andrew Katzschmann, Robert K. Soft Robotics Lab. Department of Mechanical and Process Engineering ETH Zurich Switzerland Computer Science and Artificial Intelligence Laboratory MIT CambridgeMA United States
An accurate, physically-based, and differentiable model of soft robots can unlock downstream applications in optimal control. The Finite Element Method (FEM) is an expressive approach for modeling highly deformable st... 详细信息
来源: 评论
A Toolkit to Generate Social Navigation Datasets  21st
A Toolkit to Generate Social Navigation Datasets
收藏 引用
21st International Workshop of Physical Agents, WAF 2020
作者: Baghel, Rishabh Kapoor, Aditya Bachiller, Pilar Jorvekar, Ronit R. Rodriguez-Criado, Daniel Manso, Luis J. Department of Computer Science and Engineering Indian Institute of Information Technology Guwahati Guwahati India Department of Computer Science and Information Systems Birla Institute of Technology and Science Goa Pilani India Robotics and Artificial Vision Laboratory University of Extremadura Badajoz Spain Department of Computer Engineering Pune Institute of Computer Technology Pune India Department of Computer Science College of Engineering and Physical Sciences Aston University Birmingham United Kingdom
Social navigation datasets are necessary to assess social navigation algorithms and train machine learning algorithms. Most of the currently available datasets target pedestrians’ movements as a pattern to be replica... 详细信息
来源: 评论
Delving into the Scale Variance Problem in Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Junliang Zhao, Xiaodong Shen, Linlin Computer Vision Institute School of Computer Science and Software Engineering Shenzhen University China Shenzhen Institute of Artificial Intelligence of Robotics of Society Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen 518060 China
Object detection has made substantial progress in the last decade, due to the capability of convolution in extracting local context of objects. However, the scales of objects are diverse and current convolution can on... 详细信息
来源: 评论
Selective Multi-Scale Learning for Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Junliang Lu, Weizeng Shen, Linlin Computer Vision Institute School of Computer Science and Software Engineering Shenzhen University China Shenzhen Institute of Artificial Intelligence of Robotics of Society Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China
Pyramidal networks are standard methods for multi-scale object detection. Current researches on feature pyramid networks usually adopt layer connections to collect features from certain levels of the feature hierarchy... 详细信息
来源: 评论
A Multimodal Soft Gripper with Variable Stiffness and Variable Gripping Range Based on MASH Actuator
arXiv
收藏 引用
arXiv 2024年
作者: Li, Dannuo Zhou, Xuanyi Xiong, Quan Yeow, Chen-Hua The Department of Biomedical Engineering and Advanced Robotics Centre National University of Singapore Singapore117583 Singapore The Department of Biomedical Engineering National University of Singapore Singapore117583 Singapore The Department of Biomedical Engineering and Advanced Robotics Centre National University of Singapore Singapore117583 Singapore The Department of Biomedical Engineering and Advanced Robotics Centre National University of Singapore Singapore117583 Singapore Computer Science & Artificial Intelligence Laboratory Massachusetts Institute of Technology 02139 United States
Soft pneumatic actuators with integrated strain-limiting layers have emerged as predominant components in the field of soft gripper technology for several decades. However, owing to their intrinsic strain-limiting lay... 详细信息
来源: 评论
Neural P3M: A Long-Range Interaction Modeling Enhancer for Geometric GNNs
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Yusong Cheng, Chaoran Li, Shaoning Ren, Yuxuan Shao, Bin Liu, Ge Heng, Pheng-Ann Zheng, Nanning National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications Institute of Artificial Intelligence and Robotics Xi’an Jiaotong University China University of Illinois Urbana-Champaign United States Department of Computer Science and Engineering The Chinese University of Hong Kong Hong Kong University of Science and Technology of China China Microsoft Research AI4Science
Geometric graph neural networks (GNNs) have emerged as powerful tools for modeling molecular geometry. However, they encounter limitations in effectively capturing long-range interactions in large molecular systems du... 详细信息
来源: 评论
Self-Ensembling Depth Completion Via Density-Aware Consistency
SSRN
收藏 引用
SSRN 2023年
作者: Zhang, Xuanmeng Zheng, Zhedong Jiang, Minyue Ye, Xiaoqing The ReLER Laboratory Australian Artificial Intelligence Institute University of Technology SydneyNSW2007 Australia The Sea-NExT Joint Lab The Department of Computer Science School of Computing National University of Singapore Singapore117417 Singapore The Department of Computer Vision Technology Baidu Inc. Beijing100085 China
Depth completion can predict a dense depth map by taking a sparse depth map and the aligned RGB image as input, but the acquisition of ground truth annotations is labor-intensive and non-scalable. Therefore, we resort... 详细信息
来源: 评论
Multi-scale Contrastive Learning for Gastroenteroscopy Classification
Multi-scale Contrastive Learning for Gastroenteroscopy Class...
收藏 引用
Annual IEEE Symposium on computer-Based Medical Systems
作者: Dan Li Xuechen Li Zhibin Peng Wenting Chen Linlin Shen Guangyao Wu Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University National Engineering Laboratory for Big Data System Computing Technology ShenZhen University Shenzhen China City University of Hong Kong Hong Kong SAR China Shenzhen Institute of Artificial Intelligence & Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University General Hospital
In gastroenteroscopy image analysis, numerous CADs demonstrate that deep learning aids doctors' diagnosis. The shapes and sizes of the lesions are varied. And in the clinic, the dataset appears to be data imbalanc...
来源: 评论