咨询与建议

限定检索结果

文献类型

  • 200 篇 期刊文献
  • 158 篇 会议
  • 2 册 图书

馆藏范围

  • 360 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 209 篇 工学
    • 136 篇 计算机科学与技术...
    • 125 篇 软件工程
    • 47 篇 控制科学与工程
    • 41 篇 信息与通信工程
    • 39 篇 光学工程
    • 35 篇 生物工程
    • 32 篇 生物医学工程(可授...
    • 22 篇 电气工程
    • 14 篇 机械工程
    • 13 篇 化学工程与技术
    • 10 篇 电子科学与技术(可...
    • 8 篇 仪器科学与技术
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 6 篇 交通运输工程
    • 5 篇 动力工程及工程热...
    • 5 篇 网络空间安全
  • 115 篇 理学
    • 54 篇 数学
    • 44 篇 物理学
    • 38 篇 生物学
    • 17 篇 统计学(可授理学、...
    • 13 篇 化学
    • 8 篇 系统科学
  • 52 篇 管理学
    • 27 篇 管理科学与工程(可...
    • 25 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 23 篇 医学
    • 19 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 经济学
  • 3 篇 教育学
  • 1 篇 农学

主题

  • 33 篇 artificial intel...
  • 29 篇 intelligent robo...
  • 25 篇 robot vision sys...
  • 24 篇 computer vision
  • 18 篇 laboratories
  • 15 篇 robotics and aut...
  • 13 篇 computer science
  • 13 篇 robot sensing sy...
  • 13 篇 robustness
  • 12 篇 cameras
  • 12 篇 training
  • 11 篇 shape
  • 10 篇 manipulators
  • 9 篇 semantics
  • 7 篇 face recognition
  • 7 篇 computational mo...
  • 7 篇 image reconstruc...
  • 6 篇 object detection
  • 6 篇 deformable model...
  • 6 篇 vehicle detectio...

机构

  • 35 篇 shenzhen institu...
  • 20 篇 national enginee...
  • 20 篇 artificial intel...
  • 15 篇 computer vision ...
  • 12 篇 guangdong key la...
  • 9 篇 university of sc...
  • 8 篇 artificial intel...
  • 7 篇 computer vision ...
  • 7 篇 computer vision ...
  • 7 篇 peng cheng labor...
  • 7 篇 heidelberg
  • 6 篇 college of compu...
  • 6 篇 shanghai artific...
  • 6 篇 guangdong provin...
  • 5 篇 department of co...
  • 5 篇 universitat pomp...
  • 5 篇 school of artifi...
  • 5 篇 shanghai ai labo...
  • 5 篇 computer science...
  • 5 篇 university of ch...

作者

  • 32 篇 shen linlin
  • 22 篇 n.p. papanikolop...
  • 13 篇 c.e. smith
  • 11 篇 linlin shen
  • 11 篇 xie weicheng
  • 8 篇 daniela rus
  • 8 篇 timofte radu
  • 8 篇 song siyang
  • 7 篇 bakas spyridon
  • 7 篇 menze bjoern
  • 7 篇 luo cheng
  • 7 篇 scheutz matthias
  • 6 篇 reinke annika
  • 6 篇 o. masoud
  • 6 篇 tian chunwei
  • 6 篇 rus daniela
  • 6 篇 y.v. venkatesh
  • 6 篇 zhang zhaoxiang
  • 6 篇 zhang david
  • 6 篇 zuo wangmeng

语言

  • 333 篇 英文
  • 27 篇 其他
检索条件"机构=Artificial Intelligence Robotics and Vision Laboratory Department of Computer Science"
360 条 记 录,以下是111-120 订阅
排序:
An Overview on Economic Analysis of Internet of Everything
收藏 引用
IEEE Communications Surveys and Tutorials 2025年
作者: Ding, Ningning Ouyang, Xiaomin Gao, Lin Huang, Jianwei Xing, Guoliang Guangzhou511453 China Hong Kong University of Science and Technology Department of Computer Science and Engineering 999077 Hong Kong Harbin Institute of Technology School of Electronics and Information Engineering Guangdong Provincial Key Laboratory of Aerospace Communication and Networking Technology Shenzhen China Chinese University of Hong Kong School of Science and Engineering Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen Key Laboratory of Crowd Intelligence Empowered Low-Carbon Energy Network CSIJRI Joint Research Centre on Smart Energy Storage Guangdong Shenzhen518172 China The Chinese University of Hong Kong Department of Information Engineering 999077 Hong Kong
The Internet of Everything (IoE) integrates people, processes, data, and things into a unified network, enabling highly interconnected systems with enhanced performance in terms of delay, reliability, and connection d... 详细信息
来源: 评论
CI-GNN: A Granger Causality-Inspired Graph Neural Network for Interpretable Brain Network-Based Psychiatric Diagnosis
arXiv
收藏 引用
arXiv 2023年
作者: Zheng, Kaizhong Yu, Shujian Chen, Badong National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University Xi’an China Department of Computer Science Vrije Universiteit Amsterdam Amsterdam Netherlands Machine Learning Group UiT - Arctic University of Norway Tromsø Norway
There is a recent trend to leverage the power of graph neural networks (GNNs) for brain-network based psychiatric diagnosis, which, in turn, also motivates an urgent need for psychiatrists to fully understand the deci... 详细信息
来源: 评论
A Stable Lithium-ion Battery SOH Estimation Framework for Suppressing Measurement Noise with Unknown Distribution
收藏 引用
IEEE Transactions on Transportation Electrification 2025年
作者: Ma, Wentao Xue, Jingsong Li, Yang Guo, Peng Liu, Xinghua Wei, Zhongbao Wang, Yiwen Chen, Badong Xi’an University of Technology School of Electrical Engineering 710048 China Chalmers University of Technology Department of Electrical Engineering Gothenburg41296 Sweden Beijing Institute of Technology National Engineering Laboratory for Electric Vehicles School of Mechanical Engineering Beijing100081 China Hong Kong University of Science and Technology Department of Electronic and Computer Engineering Hong Kong Institute of artificial intelligence and robotics Xi’an Jiaotong University Xi’an710048 China
Existing methods for estimating the state of health (SOH) of lithium-ion battery (LIB) typically rely on the assumption that the distribution of noise (or outliers) in the measurement data is known. However, this assu... 详细信息
来源: 评论
Online Refinement of Low-level Feature Based Activation Map for Weakly Supervised Object Localization
Online Refinement of Low-level Feature Based Activation Map ...
收藏 引用
International Conference on computer vision (ICCV)
作者: Jinheng Xie Cheng Luo Xiangping Zhu Ziqi Jin Weizeng Lu Linlin Shen Shenzhen Institute of Artificial Intelligence of Robotics of Society Guangdong Key Laboratory of Intelligent Information Processing Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University
We present a two-stage learning framework for weakly supervised object localization (WSOL). While most previous efforts rely on high-level feature based CAMs (Class Activation Maps), this paper proposes to localize ob... 详细信息
来源: 评论
UniTSFace: unified threshold integrated sample-to-sample loss for face recognition  23
UniTSFace: unified threshold integrated sample-to-sample los...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Qiufu Li Xi Jia Jiancan Zhou Linlin Shen Jinming Duan National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China and Computer Vision Institute Shenzhen University China and SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China and Computer Vision Institute Shenzhen University China and School of Computer Science University of Birmingham UK National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China and Computer Vision Institute Shenzhen University China and Aqara Lumi United Technology Co. Ltd China School of Computer Science University of Birmingham UK and Alan Turing Institute UK
Sample-to-class-based face recognition models can not fully explore the cross-sample relationship among large amounts of facial images, while sample-to-sample-based models require sophisticated pairing processes for t...
来源: 评论
UniTSFace: Unified Threshold Integrated Sample-to-Sample Loss for Face Recognition
arXiv
收藏 引用
arXiv 2023年
作者: Li, Qiufu Jia, Xi Zhou, Jiancan Shen, Linlin Duan, Jinming National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Computer Vision Institute Shenzhen University China School of Computer Science University of Birmingham United Kingdom Aqara Lumi United Technology Co. Ltd China Alan Turing Institute United Kingdom SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Sample-to-class-based face recognition models can not fully explore the cross-sample relationship among large amounts of facial images, while sample-to-sample-based models require sophisticated pairing processes for t... 详细信息
来源: 评论
Explicit-Implicit Subgoal Planning for Long-Horizon Tasks With Sparse Rewards
收藏 引用
IEEE Transactions on Automation science and Engineering 2025年 22卷 16038-16049页
作者: Fangyuan Wang Anqing Duan Peng Zhou Shengzeng Huo Guodong Guo Chenguang Yang David Navarro-Alarcon Department of Mechanical Engineering The Hong Kong Polytechnic University Hung Hom Hong Kong Ningbo Institute of Digital Twin Eastern Institute of Technology (EIT) Ningbo China Robotics Department Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI) Abu Dhabi United Arab Emirates School of Advanced Engineering Great Bay University Dongguan China Ningbo Institute of Digital Twin and Zhejiang Key Laboratory of Industrial Intelligence and Digital Twin Eastern Institute of Technology (EIT) Ningbo China Department of Computer Science University of Liverpool Liverpool U.K.
The challenges inherent in long-horizon tasks in robotics persist due to the typical inefficient exploration and sparse rewards in traditional reinforcement learning approaches. To address these challenges, we have de... 详细信息
来源: 评论
CLASSIFICATION OF LUNG CANCER SUBTYPES ON CT IMAGES WITH SYNTHETIC PATHOLOGICAL PRIORS
arXiv
收藏 引用
arXiv 2023年
作者: Zhu, Wentao Jin, Yuan Ma, Gege Chen, Geng Egger, Jan Zhang, Shaoting Metaxas, Dimitris N. Research Center for Healthcare Data Science Zhejiang Lab Hangzhou311121 China School of Computer Science and Engineering Northwestern Polytechnical University Shaanxi Xi’an710072 China Institute of Computer Graphics and Vision Graz University of Technology Graz8010 Austria Shanghai Artificial Intelligence Laboratory Shanghai200120 China Department of Computer Science Rutgers University PiscatawayNJ08854 United States
The accurate diagnosis on pathological subtypes for lung cancer is of significant importance for the follow-up treatments and prognosis managements. In this paper, we propose self-generating hybrid feature network (SG... 详细信息
来源: 评论
ST-Booster: An Iterative SpatioTemporal Perception Booster for vision-and-Language Navigation in Continuous Environments
arXiv
收藏 引用
arXiv 2025年
作者: Yue, Lu Zhou, Dongliang Xie, Liang Yin, Erwei Zhang, Feitian Department of Advanced Manufacturing and Robotics the State Key Laboratory of Turbulence and Complex Systems College of Engineering Peking University Beijing100871 China Defense Innovation Institute Academy of Military Sciences Beijing100071 China Tianjin Artificial Intelligence Innovation Center Tianjin300450 China Department of Computer Science Harbin Institute of Technology Shenzhen Xili University Town Shenzhen518055 China
vision-and-Language Navigation in Continuous Environments (VLN-CE) requires agents to navigate unknown, continuous spaces based on natural language instructions. Compared to discrete settings, VLN-CE poses two core pe... 详细信息
来源: 评论
GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Yaning Yu, Zitong Wang, Tianyi Huang, Xiaobin Shen, Linlin Gao, Zan Ren, Jianfeng Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China School of Computing and Information Technology Great Bay University Dongguan523000 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China Nanyang Technological University 50 Nanyang Ave Block N 4 639798 Singapore Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518129 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University China Jinan250014 China Key Laboratory of Computer Vision and System Ministry of Education Tianjin University of Technology Tianjin300384 China School of Computer Science University of Nottingham Ningbo China
The rapid advancement of photorealistic generators has reached a critical juncture where the discrepancy between authentic and manipulated images is increasingly indistinguishable. Thus, benchmarking and advancing tec... 详细信息
来源: 评论