咨询与建议

限定检索结果

文献类型

  • 204 篇 期刊文献
  • 161 篇 会议
  • 2 册 图书

馆藏范围

  • 367 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 222 篇 工学
    • 145 篇 计算机科学与技术...
    • 129 篇 软件工程
    • 51 篇 控制科学与工程
    • 42 篇 信息与通信工程
    • 40 篇 光学工程
    • 36 篇 生物工程
    • 33 篇 生物医学工程(可授...
    • 26 篇 电气工程
    • 15 篇 机械工程
    • 13 篇 化学工程与技术
    • 11 篇 电子科学与技术(可...
    • 8 篇 仪器科学与技术
    • 8 篇 建筑学
    • 8 篇 土木工程
    • 6 篇 交通运输工程
    • 5 篇 材料科学与工程(可...
  • 117 篇 理学
    • 54 篇 数学
    • 45 篇 物理学
    • 39 篇 生物学
    • 17 篇 统计学(可授理学、...
    • 13 篇 化学
    • 8 篇 系统科学
  • 53 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 25 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 25 篇 医学
    • 20 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
    • 6 篇 公共卫生与预防医...
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 经济学
  • 3 篇 教育学
  • 1 篇 农学

主题

  • 33 篇 artificial intel...
  • 29 篇 intelligent robo...
  • 25 篇 robot vision sys...
  • 25 篇 computer vision
  • 18 篇 laboratories
  • 15 篇 robotics and aut...
  • 13 篇 computer science
  • 13 篇 robot sensing sy...
  • 13 篇 robustness
  • 12 篇 cameras
  • 12 篇 training
  • 11 篇 shape
  • 10 篇 manipulators
  • 9 篇 semantics
  • 7 篇 face recognition
  • 7 篇 computational mo...
  • 7 篇 image reconstruc...
  • 6 篇 object detection
  • 6 篇 deformable model...
  • 6 篇 vehicle detectio...

机构

  • 36 篇 shenzhen institu...
  • 20 篇 national enginee...
  • 20 篇 artificial intel...
  • 15 篇 computer vision ...
  • 12 篇 guangdong key la...
  • 10 篇 university of sc...
  • 8 篇 peng cheng labor...
  • 8 篇 artificial intel...
  • 7 篇 computer vision ...
  • 7 篇 computer vision ...
  • 7 篇 heidelberg
  • 6 篇 college of compu...
  • 6 篇 department of co...
  • 6 篇 school of artifi...
  • 6 篇 shanghai artific...
  • 6 篇 guangdong provin...
  • 5 篇 universitat pomp...
  • 5 篇 shanghai ai labo...
  • 5 篇 computer science...
  • 5 篇 university of ch...

作者

  • 32 篇 shen linlin
  • 22 篇 n.p. papanikolop...
  • 13 篇 c.e. smith
  • 11 篇 linlin shen
  • 11 篇 xie weicheng
  • 8 篇 daniela rus
  • 8 篇 timofte radu
  • 8 篇 song siyang
  • 7 篇 bakas spyridon
  • 7 篇 rus daniela
  • 7 篇 menze bjoern
  • 7 篇 luo cheng
  • 7 篇 scheutz matthias
  • 6 篇 reinke annika
  • 6 篇 o. masoud
  • 6 篇 tian chunwei
  • 6 篇 y.v. venkatesh
  • 6 篇 zhang zhaoxiang
  • 6 篇 zhang david
  • 6 篇 zuo wangmeng

语言

  • 327 篇 英文
  • 40 篇 其他
检索条件"机构=Artificial Intelligence Robotics and Vision Laboratory Department of Computer Science"
367 条 记 录,以下是161-170 订阅
排序:
WaveCNet: Wavelet integrated CNNs to suppress aliasing effect for noise-robust image classification
arXiv
收藏 引用
arXiv 2021年
作者: Li, Qiufu Shen, Linlin Guo, Sheng Lai, Zhihui Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518060 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China MyBank Ant Group Hangzhou310012 China
Though widely used in image classification, convolutional neural networks (CNNs) are prone to noise interruptions, i.e. the CNN output can be drastically changed by small image noise. To improve the noise robustness, ... 详细信息
来源: 评论
Pareto Continual Learning: Preference-Conditioned Learning and Adaption for Dynamic Stability-Plasticity Trade-off
arXiv
收藏 引用
arXiv 2025年
作者: Lai, Song Zhao, Zhe Zhu, Fei Lin, Xi Zhang, Qingfu Meng, Gaofeng Department of Computer Science City University of Hong Kong Hong Kong Centre for Artificial Intelligence and Robotics HK Institute of Science & Innovation Chinese Academy of Sciences China State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China City University of Hong Kong Shenzhen Research Institute Hong Kong University of Science and Technology of China China
Continual learning aims to learn multiple tasks sequentially. A key challenge in continual learning is balancing between two objectives: retaining knowledge from old tasks (stability) and adapting to new tasks (plasti... 详细信息
来源: 评论
PSFHS Challenge Report: Pubic Symphysis and Fetal Head Segmentation from Intrapartum Ultrasound Images
arXiv
收藏 引用
arXiv 2024年
作者: Bai, Jieyun Zhou, Zihao Ou, Zhanhong Koehler, Gregor Stock, Raphael Maier-Hein, Klaus Elbatel, Marawan Martí, Robert Li, Xiaomeng Qiu, Yaoyang Gou, Panjie Chen, Gongping Zhao, Lei Zhang, Jianxun Dai, Yu Wang, Fangyijie Silvestre, Guénolé Curran, Kathleen Sun, Hongkun Xu, Jing Cai, Pengzhou Jiang, Lu Lan, Libin Ni, Dong Zhong, Mei Chen, Gaowen Campello, Víctor M. Lu, Yaosheng Lekadir, Karim Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization Jinan University Guangzhou China Auckland Bioengineering Institute The University of Auckland Auckland New Zealand Heidelberg Germany Department of Electronic and Computer Engineering The Hong Kong University of Science and Technology Hong Kong Computer Vision and Robotics Group University of Girona Girona Spain Co. LTD Beijing China College of Artificial Intelligence Nankai University Tianjin China College of Computer Science and Electronic Engineering Hunan University Changsha China School of Medicine University College Dublin Dublin Ireland School of Computer Science University College Dublin Dublin Ireland School of Statistics & Mathematics Zhejiang Gongshang University Hangzhou China School of Computer Science & Engineering Chongqing University of Technology Chongqing China National-Regional Key Technology Engineering Laboratory for Medical Ultrasound Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen China NanFang Hospital of Southern Medical University Guangzhou China Zhujiang Hospital of Southern Medical University Guangzhou China Departament de Matemàtiques i Informàtica Universitat de Barcelona Barcelona Spain Barcelona Spain Institute The University of Auckland Private Bag 92019 Auckland1142 New Zealand
Segmentation of the fetal and maternal structures, particularly intrapartum ultrasound imaging as advocated by the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) for monitoring labor progress... 详细信息
来源: 评论
UCPM: Uncertainty-Guided Cross-Modal Retrieval with Partially Mismatched Pairs
收藏 引用
IEEE transactions on image processing : a publication of the IEEE Signal Processing Society 2025年 PP卷 PP页
作者: Quanxing Zha Xin Liu Yiu-Ming Cheung Shu-Juan Peng Xing Xu Nannan Wang Huaqiao University Department of Computer Science Xiamen 361021 China Key Laboratory of Pattern Recognition and Computer Vision Xiamen 361021 China Huaqiao University Fujian Key Laboratory of Big Data Intelligence and Security Xiamen 361021 China Hong Kong Baptist University Department of Computer Science Hong Kong Huaqiao University Department of Artificial Intelligence Xiamen 361021 China Fujian Province University Key Laboratory of Computer Vision and Machine Learning (Huaqiao University) Xiamen 361021 China University of Electronic Science and Technology of China Center for Future Multimedia School of Computer Science and Engineering Chengdu 610051 China Xidian University State Key Laboratory of Integrated Services Networks Xi’an 710071 China
The manual annotation of perfectly aligned labels for cross-modal retrieval (CMR) is incredibly labor-intensive. As an alternative, the collection of co-occurring data pairs from the Internet is a remarkably cost-effe... 详细信息
来源: 评论
Simultaneous tactile exploration and grasp refinement for unknown objects
arXiv
收藏 引用
arXiv 2021年
作者: de Farias, Cristiana Marturi, Naresh Stolkin, Rustam Bekiroglu, Yasemin The Extreme Robotics Laboratory School of Metallurgy and Materials University of Birmingham Birmingham United Kingdom Chalmers University of Technology Department of Electrical Engineering Automatic Control research group Sweden University College London Department of Computer Science Centre for Artificial Intelligence United Kingdom
This paper addresses the problem of simultaneously exploring an unknown object to model its shape, using tactile sensors on robotic fingers, while also improving finger placement to optimise grasp stability. In many s... 详细信息
来源: 评论
Multi-stage image denoising with the wavelet transform
arXiv
收藏 引用
arXiv 2022年
作者: Tian, Chunwei Zheng, Menghua Zuo, Wangmeng Zhang, Bob Zhang, Yanning Zhang, David School of Software Northwestern Polytechnical University Shaanxi Xi’an710129 China National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Shaanxi Xi’an710129 China School of Computer Science and Technology Harbin Institute of Technology Heilongjiang Harbin150001 China Peng Cheng Laboratory Guangdong Shenzhen518055 China Department of Computer and Information Science University of Macau 999078 China School of Computer Science Northwestern Polytechnical University Shaanxi Xi’an710129 China Guangdong Shenzhen518172 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information. However, most of existing CNNs depend on enlarging depth of designed networks to obtain b... 详细信息
来源: 评论
Robust Self-Expression Learning with Adaptive Noise Perception
SSRN
收藏 引用
SSRN 2023年
作者: Wang, Yangbo Zhou, Jie Lu, Jianglin Wan, Jun Gao, Can Lin, Qingshui College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518060 China SMILE Lab Department of ECE College of Engineering Northeastern University Boston02115 United States School of Information and Safety Engineering Zhongnan University of Economics and Law Wuhan430073 China Basic Teaching Department Liaoning Technical University Huludao125105 China
Self-expression learning methods often obtain a coefficient matrix to measure the similarity between pairs of samples. However, directly using the raw data to represent each sample under the self-expression framework ... 详细信息
来源: 评论
Few Shots Are All You Need: A Progressive Few Shot Learning Approach for Low Resource Handwriting Recognition
arXiv
收藏 引用
arXiv 2021年
作者: Souibgui, Mohamed Ali Fornés, Alicia Kessentini, Yousri Megyesi, Beáta Computer Vision Center Computer Science Department Universitat Autònoma de Barcelona Spain Digital Research Center of Sfax B.P. 275 Sakiet Ezzit Sfax3021 Tunisia SMRTS : Laboratory of Signals SysteMs ARtificial Intelligence and Networks Tunisia Department of Linguistics and Philology Uppsala University Sweden
Handwritten text recognition in low resource scenarios, such as manuscripts with rare alphabets, is a challenging problem. The main difficulty comes from the very few annotated data and the limited linguistic informat... 详细信息
来源: 评论
Enhance to read better: A multi-task adversarial network for handwritten document image enhancement
arXiv
收藏 引用
arXiv 2021年
作者: Jemni, Sana Khamekhem Souibgui, Mohamed Ali Kessentini, Yousri Fornés, Alicia MIR@CL: Multimedia InfoRmation systems and Advanced Computing Laboratory Computer Vision Center Computer Science Department Universitat Autònoma de Barcelona Spain Digital Research Center of Sfax B.P. 275 Sakiet Ezzit Sfax3021 Tunisia SM@RTS : Laboratory of Signals SysteMs ARtificial Intelligence and neTworkS
Handwritten document images can be highly affected by degradation for different reasons: Paper ageing, daily-life scenarios (wrinkles, dust, etc.), bad scanning process and so on. These artifacts raise many readabilit... 详细信息
来源: 评论
BrainIB: Interpretable Brain Network-based Psychiatric Diagnosis with Graph Information Bottleneck
arXiv
收藏 引用
arXiv 2022年
作者: Zheng, Kaizhong Yu, Shujian Li, Baojuan Jenssen, Robert Chen, Badong National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications Institute of Artificial Intelligence and Robotics Xi’an Jiaotong University Xi’an China The Department of Computer Science Vrije Universiteit Amsterdam Amsterdam and the Machine Learning Group UiT - Arctic University of Norway Tromsø Norway The Machine Learning Group UiT - Arctic University of Norway Tromsø Norway The School of Biomedical Engineering Fourth Military Medical University Xi’an China
Developing a new diagnostic models based on the underlying biological mechanisms rather than subjective symptoms for psychiatric disorders is an emerging consensus. Recently, machine learning-based classifiers using f... 详细信息
来源: 评论