咨询与建议

限定检索结果

文献类型

  • 200 篇 期刊文献
  • 158 篇 会议
  • 2 册 图书

馆藏范围

  • 360 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 209 篇 工学
    • 136 篇 计算机科学与技术...
    • 125 篇 软件工程
    • 47 篇 控制科学与工程
    • 41 篇 信息与通信工程
    • 39 篇 光学工程
    • 35 篇 生物工程
    • 32 篇 生物医学工程(可授...
    • 22 篇 电气工程
    • 14 篇 机械工程
    • 13 篇 化学工程与技术
    • 10 篇 电子科学与技术(可...
    • 8 篇 仪器科学与技术
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 6 篇 交通运输工程
    • 5 篇 动力工程及工程热...
    • 5 篇 网络空间安全
  • 115 篇 理学
    • 54 篇 数学
    • 44 篇 物理学
    • 38 篇 生物学
    • 17 篇 统计学(可授理学、...
    • 13 篇 化学
    • 8 篇 系统科学
  • 52 篇 管理学
    • 27 篇 管理科学与工程(可...
    • 25 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 23 篇 医学
    • 19 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 经济学
  • 3 篇 教育学
  • 1 篇 农学

主题

  • 33 篇 artificial intel...
  • 29 篇 intelligent robo...
  • 25 篇 robot vision sys...
  • 24 篇 computer vision
  • 18 篇 laboratories
  • 15 篇 robotics and aut...
  • 13 篇 computer science
  • 13 篇 robot sensing sy...
  • 13 篇 robustness
  • 12 篇 cameras
  • 12 篇 training
  • 11 篇 shape
  • 10 篇 manipulators
  • 9 篇 semantics
  • 7 篇 face recognition
  • 7 篇 computational mo...
  • 7 篇 image reconstruc...
  • 6 篇 object detection
  • 6 篇 deformable model...
  • 6 篇 vehicle detectio...

机构

  • 35 篇 shenzhen institu...
  • 20 篇 national enginee...
  • 20 篇 artificial intel...
  • 15 篇 computer vision ...
  • 12 篇 guangdong key la...
  • 9 篇 university of sc...
  • 8 篇 artificial intel...
  • 7 篇 computer vision ...
  • 7 篇 computer vision ...
  • 7 篇 peng cheng labor...
  • 7 篇 heidelberg
  • 6 篇 college of compu...
  • 6 篇 shanghai artific...
  • 6 篇 guangdong provin...
  • 5 篇 department of co...
  • 5 篇 universitat pomp...
  • 5 篇 school of artifi...
  • 5 篇 shanghai ai labo...
  • 5 篇 computer science...
  • 5 篇 university of ch...

作者

  • 32 篇 shen linlin
  • 22 篇 n.p. papanikolop...
  • 13 篇 c.e. smith
  • 11 篇 linlin shen
  • 11 篇 xie weicheng
  • 8 篇 daniela rus
  • 8 篇 timofte radu
  • 8 篇 song siyang
  • 7 篇 bakas spyridon
  • 7 篇 menze bjoern
  • 7 篇 luo cheng
  • 7 篇 scheutz matthias
  • 6 篇 reinke annika
  • 6 篇 o. masoud
  • 6 篇 tian chunwei
  • 6 篇 rus daniela
  • 6 篇 y.v. venkatesh
  • 6 篇 zhang zhaoxiang
  • 6 篇 zhang david
  • 6 篇 zuo wangmeng

语言

  • 333 篇 英文
  • 27 篇 其他
检索条件"机构=Artificial Intelligence Robotics and Vision Laboratory Department of Computer Science"
360 条 记 录,以下是71-80 订阅
排序:
GM-DF: Generalized Multi-Scenario Deepfake Detection
arXiv
收藏 引用
arXiv 2024年
作者: Lai, Yingxin Yu, Zitong Yang, Jing Li, Bin Kang, Xiangui Shen, Linlin The School of Computing and Information Technology Great Bay University Dongguan523000 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen University Shenzhen518060 China The Guangdong Key Laboratory of Information Security The School of Computer Science and Engineering Sun Yat-sen University Guangzhou510080 China Computer Vision Institute School of Computer Science & Software Engineering Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China
Existing face forgery detection usually follows the paradigm of training models in a single domain, which leads to limited generalization capacity when unseen scenarios and unknown attacks occur. In this paper, we ela... 详细信息
来源: 评论
PLIP: Language-Image Pre-training for Person Representation Learning
arXiv
收藏 引用
arXiv 2023年
作者: Zuo, Jialong Hong, Jiahao Zhang, Feng Yu, Changqian Zhou, Hanyu Gao, Changxin Sang, Nong Wang, Jingdong National Key Laboratory of Multispectral Information Intelligent Processing Technology School of Artificial Intelligence and Automation Huazhong University of Science and Technology China Skywork AI Department of Computer Vision Baidu Inc China
Language-image pre-training is an effective technique for learning powerful representations in general domains. However, when directly turning to person representation learning, these general pre-training methods suff... 详细信息
来源: 评论
Learning Multi-dimensional Edge Feature-based AU Relation Graph for Facial Action Unit Recognition
arXiv
收藏 引用
arXiv 2022年
作者: Luo, Cheng Song, Siyang Xie, Weicheng Shen, Linlin Gunes, Hatice Computer Vision Institute Shenzhen University China Shenzhen Institute of Artificial Intelligence and Robotics for Society China Guangdong Key Laboratory of Intelligent Information Processing China Department of Computer Science and Technology University of Cambridge United Kingdom
The activations of Facial Action Units (AUs) mutually influence one another. While the relationship between a pair of AUs can be complex and unique, existing approaches fail to specifically and explicitly represent su... 详细信息
来源: 评论
Robust 3D Face Alignment with Multi-Path Neural Architecture Search
arXiv
收藏 引用
arXiv 2024年
作者: Jiang, Zhichao Wang, Hongsong Teng, Xi Li, Baopu Baidu Beijing China Department of Computer Science and Engineering Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications Southeast University Nanjing China Computer Vision Technology Institution Baidu Beijing China Baidu Research Baidu Sunnyvale United States
3D face alignment is a very challenging and fundamental problem in computer vision. Existing deep learning-based methods manually design different networks to regress either parameters of a 3D face model or 3D positio... 详细信息
来源: 评论
F2A2: flexible fully-decentralized approximate actor-critic for cooperative multi-agent reinforcement learning
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2023年 第1期24卷 8447-8521页
作者: Wenhao Li Bo Jin Xiangfeng Wang Junchi Yan Hongyuan Zha School of Data Science The Chinese University of Hong Kong Shenzhen Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China School of Software Engineering Shanghai Research Institute for Intelligent Autonomous Systems Tongji University Shanghai China School of Computer Science and Technology Key Laboratory of Mathematics and Engineering Applications Ministry of Education East China Normal University Shanghai China Department of Computer Science and Engineering Key Laboratory of Artificial Intelligence Ministry of Education Shanghai Jiao Tong University Shanghai China
Traditional centralized multi-agent reinforcement learning (MARL) algorithms are sometimes unpractical in complicated applications due to non-interactivity between agents, the curse of dimensionality, and computation ... 详细信息
来源: 评论
Neural P3M: a long-range interaction modeling enhancer for geometric GNNs  24
Neural P3M: a long-range interaction modeling enhancer for g...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Yusong Wang Chaoran Cheng Shaoning Li Yuxuan Ren Bin Shao Ge Liu Pheng-Ann Heng Nanning Zheng National Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications and Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University University of Illinois Urbana-Champaign Department of Computer Science and Engineering The Chinese University of Hong Kong University of Science and Technology of China Microsoft Research AI4Science
Geometric graph neural networks (GNNs) have emerged as powerful tools for modeling molecular geometry. However, they encounter limitations in effectively capturing long-range interactions in large molecular systems du...
来源: 评论
Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity
arXiv
收藏 引用
arXiv 2022年
作者: Luo, Cheng Lin, Qinliang Xie, Weicheng Wu, Bizhu Xie, Jinheng Shen, Linlin Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University2Shenzhen Institute of Artificial Intelligence & Robotics for Society3Guangdong Key Laboratory of Intelligent Information Processing
Current adversarial attack research reveals the vulnerability of learning-based classifiers against carefully crafted perturbations. However, most existing attack methods have inherent limitations in cross-dataset gen... 详细信息
来源: 评论
TransXNet: Learning Both Global and Local Dynamics with a Dual Dynamic Token Mixer for Visual Recognition
arXiv
收藏 引用
arXiv 2023年
作者: Lou, Meng Zhou, Hong-Yu Yang, Sibei Yu, Yizhou The Artificial Intelligence Laboratory Deepwise Healthcare Beijing China The Department of Computer Science The University of Hong Kong Hong Kong The Shanghai Engineering Research Center of Intelligent Vision and Imaging ShanghaiTech University Shanghai China
Recent studies have integrated convolution into transformers to introduce inductive bias and improve generalization performance. However, the static nature of conventional convolution prevents it from dynamically adap... 详细信息
来源: 评论
Guiding Soft Robots with Motor-Imagery Brain Signals and Impedance Control
Guiding Soft Robots with Motor-Imagery Brain Signals and Imp...
收藏 引用
IEEE International Conference on Soft robotics (RoboSoft)
作者: Maximilian Stölzle Sonal Santosh Baberwal Daniela Rus Shirley Coyle Cosimo Della Santina The Cognitive Robotics department Delft University of Technology Mekelweg 2 CD Delft Netherlands School of Electronics Engineering Dublin City University Dublin Ireland MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology Cambridge MA USA
Integrating Brain-Machine Interfaces into non-clinical applications like robot motion control remains difficult - despite remarkable advancements in clinical settings. Specifically, EEG-based motor imagery systems are...
来源: 评论
Efficient automatic design of robots
arXiv
收藏 引用
arXiv 2023年
作者: Matthews, David Spielberg, Andrew Rus, Daniela Kriegman, Sam Bongard, Josh Center for Robotics and Biosystems Northwestern University EvanstonIL60208 United States Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology CambridgeMA02139 United States Department of Computer Science University of Vermont BurlingtonVT05405 United States
Robots are notoriously difficult to design because of complex interdependencies between their physical structure, sensory and motor layouts, and behavior. Despite this, almost every detail of every robot built to date... 详细信息
来源: 评论