咨询与建议

限定检索结果

文献类型

  • 200 篇 期刊文献
  • 158 篇 会议
  • 2 册 图书

馆藏范围

  • 360 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 209 篇 工学
    • 136 篇 计算机科学与技术...
    • 125 篇 软件工程
    • 47 篇 控制科学与工程
    • 41 篇 信息与通信工程
    • 39 篇 光学工程
    • 35 篇 生物工程
    • 32 篇 生物医学工程(可授...
    • 22 篇 电气工程
    • 14 篇 机械工程
    • 13 篇 化学工程与技术
    • 10 篇 电子科学与技术(可...
    • 8 篇 仪器科学与技术
    • 6 篇 建筑学
    • 6 篇 土木工程
    • 6 篇 交通运输工程
    • 5 篇 动力工程及工程热...
    • 5 篇 网络空间安全
  • 115 篇 理学
    • 54 篇 数学
    • 44 篇 物理学
    • 38 篇 生物学
    • 17 篇 统计学(可授理学、...
    • 13 篇 化学
    • 8 篇 系统科学
  • 52 篇 管理学
    • 27 篇 管理科学与工程(可...
    • 25 篇 图书情报与档案管...
    • 6 篇 工商管理
  • 23 篇 医学
    • 19 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 经济学
  • 3 篇 教育学
  • 1 篇 农学

主题

  • 33 篇 artificial intel...
  • 29 篇 intelligent robo...
  • 25 篇 robot vision sys...
  • 24 篇 computer vision
  • 18 篇 laboratories
  • 15 篇 robotics and aut...
  • 13 篇 computer science
  • 13 篇 robot sensing sy...
  • 13 篇 robustness
  • 12 篇 cameras
  • 12 篇 training
  • 11 篇 shape
  • 10 篇 manipulators
  • 9 篇 semantics
  • 7 篇 face recognition
  • 7 篇 computational mo...
  • 7 篇 image reconstruc...
  • 6 篇 object detection
  • 6 篇 deformable model...
  • 6 篇 vehicle detectio...

机构

  • 35 篇 shenzhen institu...
  • 20 篇 national enginee...
  • 20 篇 artificial intel...
  • 15 篇 computer vision ...
  • 12 篇 guangdong key la...
  • 9 篇 university of sc...
  • 8 篇 artificial intel...
  • 7 篇 computer vision ...
  • 7 篇 computer vision ...
  • 7 篇 peng cheng labor...
  • 7 篇 heidelberg
  • 6 篇 college of compu...
  • 6 篇 shanghai artific...
  • 6 篇 guangdong provin...
  • 5 篇 department of co...
  • 5 篇 universitat pomp...
  • 5 篇 school of artifi...
  • 5 篇 shanghai ai labo...
  • 5 篇 computer science...
  • 5 篇 university of ch...

作者

  • 32 篇 shen linlin
  • 22 篇 n.p. papanikolop...
  • 13 篇 c.e. smith
  • 11 篇 linlin shen
  • 11 篇 xie weicheng
  • 8 篇 daniela rus
  • 8 篇 timofte radu
  • 8 篇 song siyang
  • 7 篇 bakas spyridon
  • 7 篇 menze bjoern
  • 7 篇 luo cheng
  • 7 篇 scheutz matthias
  • 6 篇 reinke annika
  • 6 篇 o. masoud
  • 6 篇 tian chunwei
  • 6 篇 rus daniela
  • 6 篇 y.v. venkatesh
  • 6 篇 zhang zhaoxiang
  • 6 篇 zhang david
  • 6 篇 zuo wangmeng

语言

  • 333 篇 英文
  • 27 篇 其他
检索条件"机构=Artificial Intelligence Robotics and Vision Laboratory Department of Computer Science"
360 条 记 录,以下是81-90 订阅
排序:
A Lightweight Model for Perceptual Image Compression via Implicit Priors
arXiv
收藏 引用
arXiv 2025年
作者: Wei, Hao Zhou, Yanhui Jia, Yiwen Ge, Chenyang Anwar, Saeed Mian, Ajmal National Key Laboratory of Human-Machine Hybrid Augmented Intelligence Institute of Artificial Intelligence and Robotics Xi’an Jiaotong University Xi’an710049 China School of Information and Telecommunication Xi’an Jiaotong University Xi’an710049 China Department of Computer Science and Software Engineering The University of Western Australia Crawley PerthWA6009 Australia
Perceptual image compression has shown strong potential for producing visually appealing results at low bitrates, surpassing classical standards and pixel-wise distortion-oriented neural methods. However, existing met... 详细信息
来源: 评论
SFDA-rPPG: Source-Free Domain Adaptive Remote Physiological Measurement with Spatio-Temporal Consistency
arXiv
收藏 引用
arXiv 2024年
作者: Xie, Yiping Yu, Zitong Wu, Bingjie Xie, Weicheng Shen, Linlin Computer Vision Institute School of Computer Science & Software Engineering Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China School of Computing and Information Technology Great Bay University Dongguan523000 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China Singapore
Remote Photoplethysmography (rPPG) is a non-contact method that uses facial video to predict changes in blood volume, enabling physiological metrics measurement. Traditional rPPG models often struggle with poor genera... 详细信息
来源: 评论
Online Self-distillation and Self-modeling for 3D Brain Tumor Segmentation
收藏 引用
IEEE Journal of Biomedical and Health Informatics 2025年 PP卷 PP页
作者: Pang, Yan Li, Yunhao Huang, Teng Liang, Jiaming Wang, Zhen Dong, Changyu Kuang, Dongyang Hu, Ying Chen, Hao Lei, Tim Wang, Qiong The Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China The School of Artificial Intelligence Guangzhou University China The Zhejiang Lab Hangzhou China Sun Yat-sen University China The Department of Computer Science and Engineering The Department of Chemical and Biological Engineering Hong Kong University of Science and Technology China The Department of Electrical Engineering University of Colorado Denver United States
In the specialized domain of brain tumor segmentation, supervised segmentation approaches are hindered by the limited availability of high-quality labeled data, a condition arising from data privacy concerns, signific... 详细信息
来源: 评论
Robust 3D Face Alignment with Multi-Path Neural Architecture Search
Robust 3D Face Alignment with Multi-Path Neural Architecture...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Zhichao Jiang Hongsong Wang Xi Teng Baopu Li Institute of Deep Learning (IDL) Baidu Beijing China Department of Computer Science and Engineering Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications Southeast University Nanjing China Computer Vision Technology Institution Baidu Beijing China Baidu Research Baidu Sunnyvale USA
3D face alignment is a very challenging and fundamental problem in computer vision. Existing deep learning-based methods manually design different networks to regress either parameters of a 3D face model or 3D positio... 详细信息
来源: 评论
SSC- l0 : Sparse Subspace Clustering with the l0 Inequality Constraint  7th
SSC- l0 : Sparse Subspace Clustering with the l0 Inequality...
收藏 引用
7th Asian Conference on Pattern Recognition, ACPR 2023
作者: Wang, Yangbo Zhou, Jie Lin, Qingshui Lu, Jianglin Gao, Can National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518060 China Basic Teaching Department Liaoning Technical University Huludao125105 China College of Engineering Northeastern University BostonMA02115 United States
Self-expression learning methods often obtain a coefficient matrix to measure the similarity between pairs of samples. However, directly using all points to represent a fixed sample in a class under the self-expressio... 详细信息
来源: 评论
StyleGene: Crossover and Mutation of Region-level Facial Genes for Kinship Face Synthesis
StyleGene: Crossover and Mutation of Region-level Facial Gen...
收藏 引用
Conference on computer vision and Pattern Recognition (CVPR)
作者: Hao Li Xianxu Hou Zepeng Huang Linlin Shen Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University National Engineering Laboratory for Big Data System Computing Technology Shenzhen University School of AI and Advanced Computing Xi'an Jiaotong-Liverpool University Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University
High-fidelity kinship face synthesis has many potential applications, such as kinship verification, missing child identification, and social media analysis. However, it is challenging to synthesize high-quality descen...
来源: 评论
NavCoT: Boosting LLM-Based vision-and-Language Navigation via Learning Disentangled Reasoning
收藏 引用
IEEE Transactions on Pattern Analysis and Machine intelligence 2025年 第7期47卷 5945-5957页
作者: Bingqian Lin Yunshuang Nie Ziming Wei Jiaqi Chen Shikui Ma Jianhua Han Hang Xu Xiaojun Chang Xiaodan Liang Shenzhen Campus Sun Yat-sen University Shenzhen China Shanghai Jiao Tong University Shanghai China University of Hong Kong Pok Fu Lam Hong Kong Dataa Robotics Company Beijing China Huawei Noah's Ark Lab Shanghai China School of Information Science and Technology University of Science and Technology of China Hefei China Department of Computer Vision Mohamed bin Zayed University of Artificial Intelligence (MBZUAI) Abu Dhabi UAE Peng Cheng Laboratory Shenzhen China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China
vision-and-Language Navigation (VLN), as a crucial research problem of Embodied AI, requires an embodied agent to navigate through complex 3D environments following natural language instructions. Recent research has h... 详细信息
来源: 评论
Efficient Single-Image Depth Estimation on Mobile Devices, Mobile AI & AIM 2022 Challenge: Report  17th
Efficient Single-Image Depth Estimation on Mobile Devices, ...
收藏 引用
17th European Conference on computer vision, ECCV 2022
作者: Ignatov, Andrey Malivenko, Grigory Timofte, Radu Treszczotko, Lukasz Chang, Xin Ksiazek, Piotr Lopuszynski, Michal Pioro, Maciej Rudnicki, Rafal Smyl, Maciej Ma, Yujie Li, Zhenyu Chen, Zehui Xu, Jialei Liu, Xianming Jiang, Junjun Shi, XueChao Xu, Difan Li, Yanan Wang, Xiaotao Lei, Lei Zhang, Ziyu Wang, Yicheng Huang, Zilong Luo, Guozhong Yu, Gang Fu, Bin Li, Jiaqi Wang, Yiran Huang, Zihao Cao, Zhiguo Conde, Marcos V. Sapozhnikov, Denis Lee, Byeong Hyun Park, Dongwon Hong, Seongmin Lee, Joonhee Lee, Seunggyu Chun, Se Young Computer Vision Lab ETH Zürich Zürich Switzerland AI Witchlabs Zollikerberg Switzerland University of Wuerzburg Wuerzburg Germany TCL Research Europe Warsaw Poland Harbin Institute of Technology Harbin China Xiaomi Inc. Beijing China Tencent GY-Lab Shenzhen China National Key Laboratory of Science and Technology on Multi-Spectral Information Processing School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Department of Electrical and Computer Engineering Seoul National University Seoul Korea Republic of
Various depth estimation models are now widely used on many mobile and IoT devices for image segmentation, bokeh effect rendering, object tracking and many other mobile tasks. Thus, it is very crucial to have efficien... 详细信息
来源: 评论
Beyond Instruction Following: Evaluating Inferential Rule Following of Large Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Sun, Wangtao Zhang, Chenxiang Zhang, Xueyou Yu, Xuanqing Huang, Ziyang Xu, Haotian Chen, Pei He, Shizhu Zhao, Jun Liu, Kang The Laboratory of Cognition and Decision Intelligence for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China CAS Engineering Laboratory for Intelligent Industrial Vision Institute of Automation Chinese Academy of Sciences Beijing China Department of Computer Science and Engineering Texas A&M University United States Shanghai Artificial Intelligence Laboratory China Xiaohongshu Inc China AI Lab AIGility Cloud Innovation Beijing China
Although Large Language Models (LLMs) have demonstrated strong instruction-following ability, they are further supposed to be controlled and guided by inferential rules in real-world scenarios to be safe, accurate, an... 详细信息
来源: 评论
UnrealROX+: An improved tool for acquiring synthetic data from virtual 3D environments
arXiv
收藏 引用
arXiv 2021年
作者: Martinez-Gonzalez, Pablo Oprea, Sergiu Castro-Vargas, John Alejandro Garcia-Garcia, Alberto Orts-Escolano, Sergio Garcia-Rodriguez, Jose Vincze, Markus Department of Computer Technology University of Alicante Spain Department of Computer Science and Artificial Intelligence University of Alicante Spain Spain Vision for Robotics Laboratory Tu Wien Austria
Synthetic data generation has become essential in last years for feeding data-driven algorithms, which surpassed traditional techniques performance in almost every computer vision problem. Gathering and labelling the ... 详细信息
来源: 评论