The robustness of graph neural networks(GNNs) is a critical research topic in deep *** researchers have designed regularization methods to enhance the robustness of neural networks,but there is a lack of theoretical...
详细信息
The robustness of graph neural networks(GNNs) is a critical research topic in deep *** researchers have designed regularization methods to enhance the robustness of neural networks,but there is a lack of theoretical analysis on the principle of *** order to tackle the weakness of current robustness designing methods,this paper gives new insights into how to guarantee the robustness of GNNs.A novel regularization strategy named Lya-Reg is designed to guarantee the robustness of GNNs by Lyapunov *** results give new insights into how regularization can mitigate the various adversarial effects on different graph *** experiments on various public datasets demonstrate that the proposed regularization method is more robust than the state-of-theart methods such as L1-norm,L2-norm,L2-norm,Pro-GNN,PA-GNN and GARNET against various types of graph adversarial attacks.
Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of se...
详细信息
Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of service(QoS)and quality of experience(QoE).Edge computing technology extends cloud service functionality to the edge of the mobile network,closer to the task execution end,and can effectivelymitigate the communication latency ***,the massive and heterogeneous nature of servers in edge computing systems brings new challenges to task scheduling and resource management,and the booming development of artificial neural networks provides us withmore powerfulmethods to alleviate this ***,in this paper,we proposed a time series forecasting model incorporating Conv1D,LSTM and GRU for edge computing device resource scheduling,trained and tested the forecasting model using a small self-built dataset,and achieved competitive experimental results.
Video question answering(VideoQA) is a challenging yet important task that requires a joint understanding of low-level video content and high-level textual semantics. Despite the promising progress of existing efforts...
详细信息
Video question answering(VideoQA) is a challenging yet important task that requires a joint understanding of low-level video content and high-level textual semantics. Despite the promising progress of existing efforts, recent studies revealed that current VideoQA models mostly tend to over-rely on the superficial correlations rooted in the dataset bias while overlooking the key video content, thus leading to unreliable results. Effectively understanding and modeling the temporal and semantic characteristics of a given video for robust VideoQA is crucial but, to our knowledge, has not been well investigated. To fill the research gap, we propose a robust VideoQA framework that can effectively model the cross-modality fusion and enforce the model to focus on the temporal and global content of videos when making a QA decision instead of exploiting the shortcuts in datasets. Specifically, we design a self-supervised contrastive learning objective to contrast the positive and negative pairs of multimodal input, where the fused representation of the original multimodal input is enforced to be closer to that of the intervened input based on video perturbation. We expect the fused representation to focus more on the global context of videos rather than some static keyframes. Moreover, we introduce an effective temporal order regularization to enforce the inherent sequential structure of videos for video representation. We also design a Kullback-Leibler divergence-based perturbation invariance regularization of the predicted answer distribution to improve the robustness of the model against temporal content perturbation of videos. Our method is model-agnostic and can be easily compatible with various VideoQA backbones. Extensive experimental results and analyses on several public datasets show the advantage of our method over the state-of-the-art methods in terms of both accuracy and robustness.
Label distribution learning(LDL) has shown advantages over traditional single-label learning(SLL) in many realworld applications, but its superiority has not been theoretically understood. In this paper, we attempt to...
详细信息
Label distribution learning(LDL) has shown advantages over traditional single-label learning(SLL) in many realworld applications, but its superiority has not been theoretically understood. In this paper, we attempt to explain why LDL generalizes better than SLL. Label distribution has rich supervision information such that an LDL method can still choose the sub-optimal label from label distribution even if it neglects the optimal one. In comparison, an SLL method has no information to choose from when it fails to predict the optimal label. The better generalization of LDL can be credited to the rich information of label distribution. We further establish the label distribution margin theory to prove this explanation; inspired by the theory,we put forward a novel LDL approach called LDL-LDML. In the experiments, the LDL baselines outperform the SLL ones, and LDL-LDML achieves competitive performance against existing LDL methods, which support our explanation and theories in this paper.
This paper presents Secure Orchestration, a novel framework meticulously planned to uphold rigorous security measures over the profound security concerns that lie within the container orchestration platforms, especial...
详细信息
The decision about the selection of crops for agricultural production is closely related to many different aspects, such as the features of the soil and the surrounding environment. Using state-of-the-art sensor techn...
详细信息
In the era of digital information overload, the ability to summarize books efficiently emerges as an invaluable skill. Book summarization condenses extensive texts into digestible, concise summaries, enabling readers ...
详细信息
Long Short-Term Memory (LSTM) networks are particularly useful in recommender systems since user preferences change over time. Unlike traditional recommender models which assume static user-item interactions, LSTM mod...
详细信息
Entity alignment(EA)is an important technique aiming to find the same real entity between two different source knowledge graphs(KGs).Current methods typically learn the embedding of entities for EA from the structure ...
详细信息
Entity alignment(EA)is an important technique aiming to find the same real entity between two different source knowledge graphs(KGs).Current methods typically learn the embedding of entities for EA from the structure of KGs for *** EA models are designed for rich-resource languages,requiring sufficient resources such as a parallel corpus and pre-trained language ***,low-resource language KGs have received less attention,and current models demonstrate poor performance on those low-resource ***,researchers have fused relation information and attributes for entity representations to enhance the entity alignment performance,but the relation semantics are often *** address these issues,we propose a novel Semantic-aware Graph Neural Network(SGNN)for entity ***,we generate pseudo sentences according to the relation triples and produce representations using pre-trained ***,our approach explores semantic information from the connected relations by a graph neural *** model captures expanded feature information from *** results using three low-resource languages demonstrate that our proposed SGNN approach out performs better than state-of-the-art alignment methods on three proposed datasets and three public datasets.
Dynamic flexible job shop scheduling (DFJSS) aims to achieve the optimal efficiency for production planning in the face of dynamic events. In practice, deep Q-network (DQN) algorithms have been intensively studied for...
详细信息
Dynamic flexible job shop scheduling (DFJSS) aims to achieve the optimal efficiency for production planning in the face of dynamic events. In practice, deep Q-network (DQN) algorithms have been intensively studied for solving various DFJSS problems. However, these algorithms often cause moving targets for the given job-shop state. This will inevitably lead to unstable training and severe deterioration of the performance. In this paper, we propose a training algorithm based on genetic algorithm to efficiently and effectively address this critical issue. Specifically, a state feature extraction method is first developed, which can effectively represent different job shop scenarios. Furthermore, a genetic encoding strategy is designed, which can reduce the encoding length to enhance search ability. In addition, an evaluation strategy is proposed to calculate a fixed target for each job-shop state, which can avoid the parameter update of target networks. With the designs, the DQNs could be stably trained, thus their performance is greatly improved. Extensive experiments demonstrate that the proposed algorithm outperforms the state-of-the-art peer competitors in terms of both effectiveness and generalizability to multiple scheduling scenarios with different scales. In addition, the ablation study also reveals that the proposed algorithm can outperform the DQN algorithms with different updating frequencies of target networks. IEEE
暂无评论