咨询与建议

限定检索结果

文献类型

  • 1,552 篇 期刊文献
  • 1,471 篇 会议
  • 11 册 图书

馆藏范围

  • 3,034 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,068 篇 工学
    • 1,578 篇 计算机科学与技术...
    • 1,362 篇 软件工程
    • 378 篇 信息与通信工程
    • 339 篇 生物工程
    • 312 篇 控制科学与工程
    • 223 篇 生物医学工程(可授...
    • 202 篇 光学工程
    • 158 篇 电气工程
    • 151 篇 机械工程
    • 129 篇 电子科学与技术(可...
    • 107 篇 化学工程与技术
    • 63 篇 仪器科学与技术
    • 56 篇 交通运输工程
    • 53 篇 安全科学与工程
    • 50 篇 土木工程
    • 44 篇 建筑学
  • 1,151 篇 理学
    • 581 篇 数学
    • 366 篇 物理学
    • 364 篇 生物学
    • 194 篇 统计学(可授理学、...
    • 113 篇 化学
    • 108 篇 系统科学
  • 538 篇 管理学
    • 291 篇 图书情报与档案管...
    • 263 篇 管理科学与工程(可...
    • 131 篇 工商管理
  • 161 篇 医学
    • 142 篇 临床医学
    • 124 篇 基础医学(可授医学...
    • 86 篇 药学(可授医学、理...
    • 51 篇 公共卫生与预防医...
  • 86 篇 法学
    • 78 篇 社会学
  • 36 篇 教育学
  • 34 篇 经济学
  • 20 篇 农学
  • 9 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 85 篇 semantics
  • 84 篇 machine learning
  • 81 篇 training
  • 66 篇 deep learning
  • 63 篇 computational mo...
  • 47 篇 reinforcement le...
  • 46 篇 artificial intel...
  • 43 篇 feature extracti...
  • 43 篇 accuracy
  • 39 篇 computer vision
  • 37 篇 predictive model...
  • 36 篇 speech recogniti...
  • 30 篇 visualization
  • 29 篇 object detection
  • 29 篇 image segmentati...
  • 29 篇 embeddings
  • 29 篇 data models
  • 28 篇 neural networks
  • 28 篇 robustness
  • 25 篇 task analysis

机构

  • 169 篇 moe key lab of a...
  • 142 篇 department of co...
  • 59 篇 key laboratory o...
  • 51 篇 moe key lab of a...
  • 47 篇 department of co...
  • 44 篇 department of co...
  • 36 篇 computer science...
  • 36 篇 shanghai artific...
  • 36 篇 computer science...
  • 35 篇 tencent ai lab
  • 32 篇 department of co...
  • 32 篇 computer science...
  • 32 篇 faculty of compu...
  • 30 篇 institute for ar...
  • 30 篇 gaoling school o...
  • 29 篇 shanghai jiao to...
  • 29 篇 moe key lab of a...
  • 28 篇 zhejiang lab
  • 27 篇 state key lab on...
  • 27 篇 department of co...

作者

  • 121 篇 yu kai
  • 94 篇 zhao hai
  • 71 篇 yan junchi
  • 58 篇 chen lu
  • 57 篇 qian yanmin
  • 49 篇 sun maosong
  • 45 篇 daniela rus
  • 44 篇 ayman atia
  • 43 篇 liu zhiyuan
  • 41 篇 zhang zhuosheng
  • 41 篇 atia ayman
  • 37 篇 chen xie
  • 32 篇 li zuchao
  • 32 篇 yanmin qian
  • 31 篇 rus daniela
  • 29 篇 zhu su
  • 29 篇 huang minlie
  • 28 篇 yang xiaokang
  • 27 篇 junchi yan
  • 27 篇 wu mengyue

语言

  • 2,879 篇 英文
  • 141 篇 其他
  • 21 篇 中文
  • 1 篇 德文
检索条件"机构=Artificial Intelligence and Computer Science Lab-LIACC"
3034 条 记 录,以下是81-90 订阅
排序:
EPIC: Error Pattern Informed Correction for Classroom ASR with Limited labeled Data
EPIC: Error Pattern Informed Correction for Classroom ASR wi...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Linzhao Jia Han Sun Yuang Wei Changyong Qi Xiaozhe Yang Lab of Artificial Intelligence for Education East China Normal University Shanghai China Shanghai Institute of Artificial Intelligence for Education East China Normal University Shanghai China School of Computer Science and Technology East China Normal University Shanghai China Institute of Curriculum and Instruction & Classroom Analysis Lab East China Normal University Shanghai China
Automatic speech recognition (ASR) systems have a wide range of applications in classroom analysis. However, due to the unique structure of classroom dialogue, existing ASR systems often struggle to accurately recogni... 详细信息
来源: 评论
MITIGATING REWARD OVER-OPTIMIZATION IN RLHF VIA BEHAVIOR-SUPPORTED REGULARIZATION
arXiv
收藏 引用
arXiv 2025年
作者: Dai, Juntao Chen, Taiye Yang, Yaodong Zheng, Qian Pan, Gang College of Computer Science and Technology Zhejiang University China The State Key Lab of Brain-Machine Intelligence Zhejiang University China LLM Safety Centre Beijing Academy of Artificial Intelligence China Center for AI Safety and Governance Peking University China
Reinforcement learning from human feedback (RLHF) is an effective method for aligning large language models (LLMs) with human values. However, reward over-optimization remains an open challenge leading to discrepancie... 详细信息
来源: 评论
Machine Learning in Fraud Detection for Financial Sustainability in Credit Card  2nd
Machine Learning in Fraud Detection for Financial Sustainabi...
收藏 引用
2nd International Conference on Sustainable Development Using Machine Learning, artificial intelligence, and IoT, ICSD 2024
作者: Kaur, Harleen Chauhan, Ritu Shamsi, Yezdanul Haque Alankar, Bhavya Artificial Intelligence and IoT Lab Center for Computational Biology and Bioinformatics Amity University Noida India Department of Computer Science and Engineering School of Engineering Sciences and Technology Jamia Hamdard New Delhi India
In today’s financial world, various technologies have been emerged and with the evolution in the technologies it has led to the increase in the fraud cases. The sustainable growth of businesses and the financial mark... 详细信息
来源: 评论
Explainable Machine Learning for Radio Environment Mapping: An Intelligent System for Electric Field Strength Monitoring.
收藏 引用
IEEE Access 2025年 13卷 75104-75122页
作者: Kiouvrekis, Yiannis Panagiotakopoulos, Theodor Nousi, Efthymia Filippopoulos, Ioannis Ploussi, Agapi Spyratou, Ellas Efstathopoulos, Efstathios P. University of Thessaly Mathematics Computer Science and Artificial Intelligence Lab Faculty of Public and One Health Karditsa43100 Greece University of Limassol Department of Information Technologies Limassol Cyprus University of Nicosia Business School Cyprus University of Patras Department of Management Science and Technology Patras26334 Greece Infralabs Ltd Agiou Pavlou 61 Nicosia Cyprus University of Limassol Limassol Cyprus National and Kapodistrian University of Athens Medical School Department of Applied Medical Physics Athens11527 Greece
The accurate characterization of signal propagation is critical for optimizing wireless network performance and supporting applications such as electromagnetic field (EMF) exposure assessment and the development of Ra... 详细信息
来源: 评论
artificial intelligence Detects Antidepressant Use From Nocturnal Breathing
收藏 引用
Biological Psychiatry 2025年 第9期97卷 S22-S22页
作者: Dina Katabi MIT Computer Science & Artificial Intelligence Lab
来源: 评论
Neuronal Activation States as Sample Embeddings for Data Selection in Task-Specific Instruction Tuning
arXiv
收藏 引用
arXiv 2025年
作者: Ma, Da Shang, Gonghu Chen, Zhi Qin, Libo Luo, Yijie Pan, Lei Fan, Shuai Chen, Lu Yu, Kai X-LANCE Lab Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence SJTU AI Institute Shanghai Jiao Tong University Shanghai China AISpeech Co. Ltd. Suzhou China ByteDance China School of Computer Science and Engineering Central South University China
Task-specific instruction tuning enhances the performance of large language models (LLMs) on specialized tasks, yet efficiently selecting relevant data for this purpose remains a challenge. Inspired by neural coactiva... 详细信息
来源: 评论
Non-Equilibrium MAV-Capture-MAV via Time-Optimal Planning and Reinforcement Learning
arXiv
收藏 引用
arXiv 2025年
作者: Zheng, Canlun Guo, Zhanyu Yin, Zikang Wang, Chunyu Wang, Zhikun Zhao, Shiyu College of Computer Science and Technology Zhejiang University Hangzhou China WINDY Lab Department of Artificial Intelligence Westlake University Hangzhou China Department of Electrical Engineering California Institute of Technology Pasadena United States
The capture of flying MAVs (micro aerial vehicles) has garnered increasing research attention due to its intriguing challenges and promising applications. Despite recent advancements, a key limitation of existing work... 详细信息
来源: 评论
Deep Learning and Shape-Driven Combined Approach for Breast Cancer Tumor Segmentation
Deep Learning and Shape-Driven Combined Approach for Breast ...
收藏 引用
International Conference on Advancements in Computational sciences (ICACS)
作者: Mudassar Ali Haoji Hu Tufail Muhammad Muhammad Ahsan Qureshi Tariq Mahmood College of Information Science and Electronic Engineering Zhejiang University Hangzhou China Department of Computer Science Air University Islamabad Pakistan Artificial Intelligence and Data Analytics Lab CCIS Prince Sultan University Riyadh Kingdom of Saudi Arabia.
Our aim is to enhance the performance of segmenting breast cancer from medical images by overcoming major challenges, including data insufficiency and complexity when training a model. Using the INbreast dataset, it p... 详细信息
来源: 评论
Applicability of the Minimal Dominating Set for Influence Maximisation in Multilayer Networks
arXiv
收藏 引用
arXiv 2025年
作者: Czuba, Michal Jia, Mingshan Bródka, Piotr Musial, Katarzyna Department of Artificial Intelligence Wroclaw University of Science and Technology 27 wybrzeze Wyspiańskiego st Wroclaw50-370 Poland Complex Adaptive Systems Lab Data Science Institute School of Computer Science University of Technology Sydney UltimoNSW2007 Australia
The minimal dominating set (MDS) is a well-established concept in network controllability and has been successfully applied in various domains, including sensor placement, network resilience, and epidemic containment.... 详细信息
来源: 评论
Benchmarking Graph Representations and Graph Neural Networks for Multivariate Time Series Classification
arXiv
收藏 引用
arXiv 2025年
作者: Yang, Wennuo Wu, Shiling Zhou, Yuzhi Luo, Cheng He, Xilin Xie, Weicheng Shen, Linlin Song, Siyang Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University China Shenzhen Institute of Artificial Intelligence and Robotics for Society China Guangdong Provincial Key Laboratory of Intelligent Information Processing China HBUG Lab University of Exeter United Kingdom
Multivariate Time Series Classification (MTSC) enables the analysis if complex temporal data, and thus serves as a cornerstone in various real-world applications, ranging from healthcare to finance. Since the relation... 详细信息
来源: 评论