咨询与建议

限定检索结果

文献类型

  • 104 篇 期刊文献
  • 76 篇 会议

馆藏范围

  • 180 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 125 篇 工学
    • 88 篇 计算机科学与技术...
    • 81 篇 软件工程
    • 39 篇 光学工程
    • 32 篇 生物工程
    • 22 篇 信息与通信工程
    • 19 篇 生物医学工程(可授...
    • 13 篇 建筑学
    • 11 篇 土木工程
    • 8 篇 机械工程
    • 8 篇 控制科学与工程
    • 6 篇 电气工程
    • 6 篇 测绘科学与技术
    • 5 篇 化学工程与技术
    • 4 篇 电子科学与技术(可...
    • 4 篇 交通运输工程
    • 3 篇 仪器科学与技术
    • 2 篇 材料科学与工程(可...
  • 80 篇 理学
    • 42 篇 物理学
    • 32 篇 生物学
    • 26 篇 数学
    • 10 篇 统计学(可授理学、...
    • 5 篇 化学
    • 4 篇 系统科学
  • 30 篇 管理学
    • 17 篇 图书情报与档案管...
    • 15 篇 管理科学与工程(可...
  • 12 篇 医学
    • 9 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 6 篇 药学(可授医学、理...
    • 4 篇 公共卫生与预防医...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 军事学
  • 1 篇 农学

主题

  • 14 篇 computer vision
  • 8 篇 training
  • 7 篇 feature extracti...
  • 6 篇 image segmentati...
  • 6 篇 convolution
  • 6 篇 computational mo...
  • 5 篇 deep learning
  • 5 篇 generative adver...
  • 4 篇 semantic segment...
  • 4 篇 three-dimensiona...
  • 4 篇 pixels
  • 4 篇 semantics
  • 4 篇 image reconstruc...
  • 3 篇 image enhancemen...
  • 3 篇 covid-19
  • 3 篇 object detection
  • 3 篇 scalability
  • 3 篇 neurons
  • 3 篇 distillation
  • 3 篇 self-supervised ...

机构

  • 21 篇 siat branch shen...
  • 19 篇 shanghai artific...
  • 13 篇 shenzhen key lab...
  • 13 篇 shenzhen key lab...
  • 12 篇 university of ch...
  • 9 篇 university of sc...
  • 9 篇 shanghai jiao to...
  • 8 篇 school of artifi...
  • 8 篇 shanghai ai labo...
  • 8 篇 computer vision ...
  • 7 篇 harbin institute...
  • 6 篇 sensetime resear...
  • 6 篇 xidian universit...
  • 6 篇 nanjing universi...
  • 5 篇 arc lab tencent ...
  • 5 篇 graduate institu...
  • 5 篇 hefei university...
  • 5 篇 nanyang technolo...
  • 5 篇 beijing jiaotong...
  • 5 篇 university of ma...

作者

  • 21 篇 qiao yu
  • 16 篇 timofte radu
  • 12 篇 wang yali
  • 12 篇 dong chao
  • 9 篇 nair madhu s.
  • 7 篇 yu qiao
  • 6 篇 bakas spyridon
  • 6 篇 zhang dafeng
  • 6 篇 reinke annika
  • 6 篇 chen chen
  • 6 篇 zhang zhao
  • 6 篇 chen xiangyu
  • 6 篇 menze bjoern
  • 6 篇 lei lei
  • 6 篇 madhu s. nair
  • 5 篇 van gool luc
  • 5 篇 deng-ping fan
  • 5 篇 wang xiaotao
  • 5 篇 fu bin
  • 5 篇 wang xintao

语言

  • 170 篇 英文
  • 9 篇 其他
  • 1 篇 中文
检索条件"机构=Artificial Intelligence and Computer Vision Lab"
180 条 记 录,以下是71-80 订阅
排序:
CLASSIFICATION OF LUNG CANCER SUBTYPES ON CT IMAGES WITH SYNTHETIC PATHOLOGICAL PRIORS
arXiv
收藏 引用
arXiv 2023年
作者: Zhu, Wentao Jin, Yuan Ma, Gege Chen, Geng Egger, Jan Zhang, Shaoting Metaxas, Dimitris N. Research Center for Healthcare Data Science Zhejiang Lab Hangzhou311121 China School of Computer Science and Engineering Northwestern Polytechnical University Shaanxi Xi’an710072 China Institute of Computer Graphics and Vision Graz University of Technology Graz8010 Austria Shanghai Artificial Intelligence Laboratory Shanghai200120 China Department of Computer Science Rutgers University PiscatawayNJ08854 United States
The accurate diagnosis on pathological subtypes for lung cancer is of significant importance for the follow-up treatments and prognosis managements. In this paper, we propose self-generating hybrid feature network (SG... 详细信息
来源: 评论
Traceable and Authenticable Image Tagging for Fake News Detection
arXiv
收藏 引用
arXiv 2022年
作者: Meng, Ruohan Zhou, Zhili Cui, Qi Lam, Kwok-Yan Kot, Alex School of Computer and Software Nanjing University of Information Science and Technology China Institute of Artificial Intelligence and Blockchain Guangzhou University China Computer Science and Engineering Nanyang Technological University Singapore Lab Nanyang Technological University Singapore Centre for Computer Vision and Deep Learning University of Windsor Canada
To prevent fake news images from misleading the public, it is desirable not only to verify the authenticity of news images but also to trace the source of fake news, so as to provide a complete forensic chain for reli... 详细信息
来源: 评论
On the analysis of HEVC Intra Prediction Mode Decision Variants  3
On the analysis of HEVC Intra Prediction Mode Decision Varia...
收藏 引用
3rd International Conference on Computing and Network Communications, CoCoNet 2019
作者: Nair, Preethi S. Nair, Madhu S. Department of Computer Science University of Kerala Kariavattom Thiruvananthapuram Kerala695581 India Artificial Intelligence and Computer Vision Lab Department of Computer Science Cochin University of Science and Technology Kochi Kerala682022 India
This paper presents a comparative analysis of some major High Efficiency Video Coding (HEVC) intra prediction mode decision methods reported in the literature. Intra coding in HEVC is based on spatial sample predictio... 详细信息
来源: 评论
BiLSTM-Autoencoder Architecture for Stance Prediction
BiLSTM-Autoencoder Architecture for Stance Prediction
收藏 引用
2020 International Conference on Data Science and Engineering, ICDSE 2020
作者: Padnekar, S Meena Kumar, G Santhosh Deepak, P. Cochin University of Science and Technology Artificial Intelligence and Computer Vision Lab Department of Computer Science Kochi India Queen's University School of Electronics Electrical Engineering and Computer Science Belfast United Kingdom
The recent surge in the abundance of fake news appearing on social media and news websites poses a potential threat to high-quality journalism. Misinformation hurts people, society, science, and democracy. This reason... 详细信息
来源: 评论
Generalized real-world super-resolution through adversarial robustness
arXiv
收藏 引用
arXiv 2021年
作者: Castillo, Angela Escobar, María Pérez, Juan C. Romero, Andrés Timofte, Radu van Gool, Luc Arbeláez, Pablo Center for Research and Formation in Artificial Intelligence Universidad de los Andes Colombia Saudi Arabia Computer Vision Lab ETH Zürich Switzerland
Real-world Super-Resolution (SR) has been traditionally tackled by first learning a specific degradation model that resembles the noise and corruption artifacts in low-resolution imagery. Thus, current methods lack ge... 详细信息
来源: 评论
Activating More Pixels in Image Super-Resolution Transformer
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Xiangyu Wang, Xintao Zhou, Jiantao Qiao, Yu Dong, Chao State Key Laboratory of Internet of Things for Smart City University of Macau China Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China Shanghai Artificial Intelligence Laboratory China ARC Lab Tencent PCG China
Transformer-based methods have shown impressive performance in low-level vision tasks, such as image super-resolution. However, we find that these networks can only utilize a limited spatial range of input information... 详细信息
来源: 评论
UniFormer: Unifying Convolution and Self-attention for Visual Recognition
arXiv
收藏 引用
arXiv 2022年
作者: Li, Kunchang Wang, Yali Zhang, Junhao Gao, Peng Song, Guanglu Liu, Yu Li, Hongsheng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China University of Chinese Academy of Sciences Beijing100049 China Shanghai Artificial Intelligence Laboratory Shanghai200232 China National University of Singapore Singapore Shanghai Artificial Intelligence Laboratory China SenseTime Research China The Chinese University of Hong Kong Hong Kong
It is a challenging task to learn discriminative representation from images and videos, due to large local redundancy and complex global dependency in these visual data. Convolution neural networks (CNNs) and vision t... 详细信息
来源: 评论
Density-aware and Depth-aware Visual Representation for Zero-Shot Object Counting
Density-aware and Depth-aware Visual Representation for Zero...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Fang Nan Feng Tian Ni Zhang Nian Liu Haonan Miao Guang Dai Mengmeng Wang Faculty of Electronic and Information Engineering Xi’an Jiaotong University Xi’an China Ministry of Education Key Laboratory of Intelligent Networks and Network Security Xi’an Jiaotong University Xi’an China School of Automation Northwestern Polytechnical University Xi’an China Computer Vision Department Mohamed bin Zayed University of Artificial Intelligence Abu Dhabi UAE SGIT AI Lab State Grid Corporation of China Zhejiang University of Technology Hang Zhou China
Previous methods often utilize CLIP semantic classifiers with class names for zero-shot object counting. However, they ignore crucial density and depth knowledge for counting tasks. Thus, we propose a density-aware an... 详细信息
来源: 评论
An interactive system to improve cognitive abilities using electromyographic signals  21
An interactive system to improve cognitive abilities using e...
收藏 引用
Proceedings of the 5th International Conference on Advances in artificial intelligence
作者: Marco Enrique Benalcázar Palacios Xavier Aguas Ángel Leonardo Valdivieso Caraguay Lorena Isabel Barona López Rubén Nogales Jaime Guilcapi Freddy Benalcázar Artificial intelligence and Computer Vision Research Lab Departamento de Informática y Ciencias de la Computación(DiCC) Escuela Politecnica Nacional Ecuador Artificial intelligence and Computer Vision Research Lab Departamento de Informática y Ciencias de la Computación(DiCC) Escuela Politécnica Nacional Ecuador Facultad de ingeniería en Sistemas Electrónica e industrial Universidad Técnica de Ambato Ecuador Facultad de Ingeniería en Sistemas Electrónica e Industrial Universidad Técnica de Ambato Ecuador
This article presents a system for improving people’s cognitive abilities using electromyography (EMG) signals. This system was created under the serious game mode with a new way of interaction with the user. The sen... 详细信息
来源: 评论
Low-Resolution Action Recognition for Tiny Actions Challenge
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Boyu Qiao, Yu Wang, Yali ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Shanghai AI Laboratory Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Tiny Actions Challenge focuses on understanding human activities in real-world surveillance. Basically, there are two main difficulties for activity recognition in this scenario. First, human activities are often reco... 详细信息
来源: 评论