咨询与建议

限定检索结果

文献类型

  • 104 篇 期刊文献
  • 76 篇 会议

馆藏范围

  • 180 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 125 篇 工学
    • 88 篇 计算机科学与技术...
    • 81 篇 软件工程
    • 39 篇 光学工程
    • 32 篇 生物工程
    • 22 篇 信息与通信工程
    • 19 篇 生物医学工程(可授...
    • 13 篇 建筑学
    • 11 篇 土木工程
    • 8 篇 机械工程
    • 8 篇 控制科学与工程
    • 6 篇 电气工程
    • 6 篇 测绘科学与技术
    • 5 篇 化学工程与技术
    • 4 篇 电子科学与技术(可...
    • 4 篇 交通运输工程
    • 3 篇 仪器科学与技术
    • 2 篇 材料科学与工程(可...
  • 80 篇 理学
    • 42 篇 物理学
    • 32 篇 生物学
    • 26 篇 数学
    • 10 篇 统计学(可授理学、...
    • 5 篇 化学
    • 4 篇 系统科学
  • 30 篇 管理学
    • 17 篇 图书情报与档案管...
    • 15 篇 管理科学与工程(可...
  • 12 篇 医学
    • 9 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 6 篇 药学(可授医学、理...
    • 4 篇 公共卫生与预防医...
  • 4 篇 法学
    • 4 篇 社会学
  • 2 篇 军事学
  • 1 篇 农学

主题

  • 14 篇 computer vision
  • 8 篇 training
  • 7 篇 feature extracti...
  • 6 篇 image segmentati...
  • 6 篇 convolution
  • 6 篇 computational mo...
  • 5 篇 deep learning
  • 5 篇 generative adver...
  • 4 篇 semantic segment...
  • 4 篇 three-dimensiona...
  • 4 篇 pixels
  • 4 篇 semantics
  • 4 篇 image reconstruc...
  • 3 篇 image enhancemen...
  • 3 篇 covid-19
  • 3 篇 object detection
  • 3 篇 scalability
  • 3 篇 neurons
  • 3 篇 distillation
  • 3 篇 self-supervised ...

机构

  • 21 篇 siat branch shen...
  • 19 篇 shanghai artific...
  • 13 篇 shenzhen key lab...
  • 13 篇 shenzhen key lab...
  • 12 篇 university of ch...
  • 9 篇 university of sc...
  • 9 篇 shanghai jiao to...
  • 8 篇 school of artifi...
  • 8 篇 shanghai ai labo...
  • 8 篇 computer vision ...
  • 7 篇 harbin institute...
  • 6 篇 sensetime resear...
  • 6 篇 xidian universit...
  • 6 篇 nanjing universi...
  • 5 篇 arc lab tencent ...
  • 5 篇 graduate institu...
  • 5 篇 hefei university...
  • 5 篇 nanyang technolo...
  • 5 篇 beijing jiaotong...
  • 5 篇 university of ma...

作者

  • 21 篇 qiao yu
  • 16 篇 timofte radu
  • 12 篇 wang yali
  • 12 篇 dong chao
  • 9 篇 nair madhu s.
  • 7 篇 yu qiao
  • 6 篇 bakas spyridon
  • 6 篇 zhang dafeng
  • 6 篇 reinke annika
  • 6 篇 chen chen
  • 6 篇 zhang zhao
  • 6 篇 chen xiangyu
  • 6 篇 menze bjoern
  • 6 篇 lei lei
  • 6 篇 madhu s. nair
  • 5 篇 van gool luc
  • 5 篇 deng-ping fan
  • 5 篇 wang xiaotao
  • 5 篇 fu bin
  • 5 篇 wang xintao

语言

  • 170 篇 英文
  • 9 篇 其他
  • 1 篇 中文
检索条件"机构=Artificial Intelligence and Computer Vision Lab"
180 条 记 录,以下是81-90 订阅
排序:
NavCoT: Boosting LLM-Based vision-and-Language Navigation via Learning Disentangled Reasoning
收藏 引用
IEEE Transactions on Pattern Analysis and Machine intelligence 2025年 第7期47卷 5945-5957页
作者: Bingqian Lin Yunshuang Nie Ziming Wei Jiaqi Chen Shikui Ma Jianhua Han Hang Xu Xiaojun Chang Xiaodan Liang Shenzhen Campus Sun Yat-sen University Shenzhen China Shanghai Jiao Tong University Shanghai China University of Hong Kong Pok Fu Lam Hong Kong Dataa Robotics Company Beijing China Huawei Noah's Ark Lab Shanghai China School of Information Science and Technology University of Science and Technology of China Hefei China Department of Computer Vision Mohamed bin Zayed University of Artificial Intelligence (MBZUAI) Abu Dhabi UAE Peng Cheng Laboratory Shenzhen China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China
vision-and-Language Navigation (VLN), as a crucial research problem of Embodied AI, requires an embodied agent to navigate through complex 3D environments following natural language instructions. Recent research has h... 详细信息
来源: 评论
MTVCrafter: 4D Motion Tokenization for Open-World Human Image Animation
arXiv
收藏 引用
arXiv 2025年
作者: Ding, Yanbo Hu, Xirui Guo, Zhizhi Wang, Yali Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China China Telecom China School of Computer Science and Technology Xi’an Jiaotong University China School of Artificial Intelligence University of Chinese Academy of Sciences China Shanghai Artificial Intelligence Laboratory China
Human image animation has gained increasing attention and developed rapidly due to its broad applications in digital humans. However, existing methods rely largely on 2D-rendered pose images for motion guidance, which... 详细信息
来源: 评论
Sad: Saliency-based defenses against adversarial examples
arXiv
收藏 引用
arXiv 2020年
作者: Tran, Richard Patrick, David Geyer, Michael Fernandez, Amanda S. Vision and Artificial Intelligence Lab Department of Computer Science University of Texas at San Antonio
With the rise in popularity of machine and deep learning models, there is an increased focus on their vulnerability to malicious inputs. These adversarial examples drift model predictions away from the original intent... 详细信息
来源: 评论
GeneSegNet: a deep learning framework for cell segmentation by integrating gene expression and imaging
收藏 引用
Genome Biology 2023年 第1期24卷 235-235页
作者: Wang, Yuxing Wang, Wenguan Liu, Dongfang Hou, Wenpin Zhou, Tianfei Ji, Zhicheng Department of Computer Engineering Rochester Institute of Technology Rochester United States Department of Biostatistics and Bioinformatics Duke University School of Medicine Durham United States The ReLER Lab from the Australian Artificial Intelligence Institute (AAII) University of Technology Sydney Sydney Australia Department of Biostatistics Columbia University Mailman School of Public Health New York City United States Computer Vision Lab ETH Zurich Zurich Switzerland
When analyzing data from in situ RNA detection technologies, cell segmentation is an essential step in identifying cell boundaries, assigning RNA reads to cells, and studying the gene expression and morphological feat... 详细信息
来源: 评论
Interactive Multi-dimension Modulation with Dynamic Controllable Residual Learning for Image Restoration  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: He, Jingwen Dong, Chao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
Interactive image restoration aims to generate restored images by adjusting a controlling coefficient which determines the restoration level. Previous works are restricted in modulating image with a single coefficient... 详细信息
来源: 评论
LocalViT: Analyzing Locality in vision Transformers
LocalViT: Analyzing Locality in Vision Transformers
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Yawei Li Kai Zhang Jiezhang Cao Radu Timofte Michele Magno Luca Benini Luc Van Goo Computer Vision Lab D-ITET ETH Zurich Switzerland Center for Artificial Intelligence and Data Science (CAIDAS) University of Wurzburg Germany Center for Project-Based Learning D-ITET ETH Zurich Switzerland Integrated Systems Laboratory D-ITET ETH Zurich Switzerland Department of Electrical Electronic and Information Engineering University of Bologna Italy Processing Speech and Images (PSI) KU Leuven Belgium
The aim of this paper is to study the influence of locality mechanisms in vision transformers. Transformers originated from machine translation and are particularly good at modelling long-range dependencies within a l...
来源: 评论
NTIRE 2023 Image Shadow Removal Challenge Report
NTIRE 2023 Image Shadow Removal Challenge Report
收藏 引用
2023 IEEE/CVF Conference on computer vision and Pattern Recognition Workshops, CVPRW 2023
作者: Vasluianu, Florin-Alexandru Seizinger, Tim Timofte, Radu Cui, Shuhao Huang, Junshi Tian, Shuman Fan, Mingyuan Zhang, Jiaqi Zhu, Li Wei, Xiaoming Wei, Xiaolin Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjölund, Jens Schön, Thomas B. Dong, Xiaoyi Zhang, Xi Sheryl Li, Chenghua Leng, Cong Yeo, Woon-Ha Oh, Wang-Taek Lee, Yeo-Reum Ryu, Han-Cheol Luo, Jinting Jiang, Chengzhi Han, Mingyan Wu, Qi Lin, Wenjie Yu, Lei Li, Xinpeng Jiang, Ting Fan, Haoqiang Liu, Shuaicheng Xu, Shuning Song, Binbin Chen, Xiangyu Zhang, Shile Zhou, Jiantao Zhang, Zhao Zhao, Suiyi Zheng, Huan Gao, Yangcheng Wei, Yanyan Wang, Bo Ren, Jiahuan Luo, Yan Kondo, Yuki Miyata, Riku Yasue, Fuma Naruki, Taito Ukita, Norimichi Chang, Hua-En Yang, Hao-Hsiang Chen, Yi-Chung Chiang, Yuan-Chun Huang, Zhi-Kai Chen, Wei-Ting Chen, I-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Xianwei, Li Fu, Huiyuan Liu, Chunlin Ma, Huadong Fu, Binglan He, Huiming Wang, Mengjia She, Wenxuan Liu, Yu Nathan, Sabari Kansal, Priya Zhang, Zhongjian Yang, Huabin Wang, Yan Zhang, Yanru Phutke, Shruti S. Kulkarni, Ashutosh Khan, Md Raqib Murala, Subrahmanyam Vipparthi, Santosh Kumar Ye, Heng Liu, Zixi Yang, Xingyi Liu, Songhua Wu, Yinwei Jing, Yongcheng Yu, Qianhao Zheng, Naishan Huang, Jie Long, Yuhang Yao, Mingde Zhao, Feng Zhao, Bowen Ye, Nan Shen, Ning Cao, Yanpeng Xiong, Tong Xia, Weiran Li, Dingwen Xia, Shuchen Computer Vision Lab Ifi Caidas University of Würzburg Germany Computer Vision Lab Eth Zürich Switzerland Meituan Group China Department of Information Technology Uppsala University Sweden Institute of Automation Chinese Academy of Sciences Beijing China Nanjing China Maicro Nanjing China Department of Artificial Intelligence Convergence Sahmyook University Seoul Korea Republic of Megvii Technology China University of Electronic Science and Technology of China China University of Macau China China Toyota Technological Institute Japan Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States Beijing University of Post and Teleconmunication Beijing China Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education China Couger Inc. Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar Punjab Rupnagar India Research Institute Singapore National University of Singapore Singapore Research Institute Singapore University of Sydney Australia Brain-Inspired Vision Laboratory Information Science and Technology Institution University of Science and Technology of China China State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou310027 China Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou310027 China South China University of Technology China
This work reviews the results of the NTIRE 2023 Challenge on Image Shadow Removal. The described set of solutions were proposed for a novel dataset, which captures a wide range of object-light interactions. It consist... 详细信息
来源: 评论
A Model for Real-Time Hand Gesture Recognition Using Electromyography (EMG), Covariances and Feed-Forward artificial Neural Networks
A Model for Real-Time Hand Gesture Recognition Using Electro...
收藏 引用
IEEE ANDESCON
作者: Marco E. Benalcázar José González Andrés Jaramillo-Yánez Carlos E. Anchundia Patricio Zambrano Marco Segura Artificial Intelligence and Computer Vision Research Lab Escuela Politécnica Nacional Quito Ecuador
Hand gesture recognition has many applications that require models to work in real time and with high recognition accuracy. The problem of hand gesture recognition involves identifying the time, duration and the class... 详细信息
来源: 评论
Cross Domain Object Detection by Target-Perceived Dual Branch Distillation
arXiv
收藏 引用
arXiv 2022年
作者: He, Mengzhe Wang, Yali Wu, Jiaxi Wang, Yiru Li, Hanqing Li, Bo Gan, Weihao Wu, Wei Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China SenseTime Research University of Chinese Academy of Science China Shanghai AI Laboratory Shanghai China Beihang University China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Cross domain object detection is a realistic and challenging task in the wild. It suffers from performance degradation due to large shift of data distributions and lack of instance-level annotations in the target doma... 详细信息
来源: 评论
Mitigating Artifacts in Real-World Video Super-Resolution Models
arXiv
收藏 引用
arXiv 2022年
作者: Xie, Liangbin Wang, Xintao Shi, Shuwei Gu, Jinjin Dong, Chao Shan, Ying The Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Macau China ARC Lab Tencent PCG China Shenzhen International Graduate School Tsinghua University China The University of Sydney Australia Shanghai Artificial Intelligence Laboratory China
The recurrent structure is a prevalent framework for the task of video super-resolution, which models the temporal dependency between frames via hidden states. When applied to real-world scenarios with unknown and com... 详细信息
来源: 评论