咨询与建议

限定检索结果

文献类型

  • 3,799 篇 会议
  • 1,749 篇 期刊文献
  • 23 册 图书

馆藏范围

  • 5,571 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,125 篇 工学
    • 2,426 篇 计算机科学与技术...
    • 2,023 篇 软件工程
    • 790 篇 信息与通信工程
    • 615 篇 控制科学与工程
    • 500 篇 生物工程
    • 405 篇 电气工程
    • 403 篇 生物医学工程(可授...
    • 309 篇 光学工程
    • 265 篇 网络空间安全
    • 236 篇 电子科学与技术(可...
    • 204 篇 安全科学与工程
    • 199 篇 仪器科学与技术
    • 188 篇 机械工程
    • 166 篇 交通运输工程
    • 154 篇 化学工程与技术
    • 153 篇 动力工程及工程热...
  • 1,696 篇 理学
    • 781 篇 数学
    • 578 篇 生物学
    • 428 篇 物理学
    • 318 篇 统计学(可授理学、...
    • 234 篇 化学
    • 137 篇 系统科学
  • 1,001 篇 管理学
    • 636 篇 管理科学与工程(可...
    • 414 篇 图书情报与档案管...
    • 310 篇 工商管理
  • 492 篇 医学
    • 387 篇 临床医学
    • 349 篇 基础医学(可授医学...
    • 276 篇 公共卫生与预防医...
    • 174 篇 药学(可授医学、理...
  • 192 篇 法学
    • 171 篇 社会学
  • 131 篇 经济学
  • 130 篇 农学
  • 46 篇 教育学
  • 23 篇 文学
  • 8 篇 军事学
  • 4 篇 艺术学

主题

  • 499 篇 accuracy
  • 342 篇 deep learning
  • 269 篇 real-time system...
  • 252 篇 convolutional ne...
  • 240 篇 machine learning
  • 223 篇 training
  • 219 篇 feature extracti...
  • 181 篇 computational mo...
  • 175 篇 predictive model...
  • 151 篇 support vector m...
  • 138 篇 artificial intel...
  • 129 篇 data models
  • 127 篇 internet of thin...
  • 114 篇 machine learning...
  • 101 篇 optimization
  • 97 篇 medical services
  • 95 篇 technological in...
  • 90 篇 prediction algor...
  • 86 篇 reliability
  • 84 篇 security

机构

  • 78 篇 maharishi school...
  • 64 篇 department of ar...
  • 59 篇 vishwakarma inst...
  • 56 篇 school of artifi...
  • 53 篇 centre of interd...
  • 36 篇 shenzhen institu...
  • 31 篇 department of el...
  • 31 篇 department of co...
  • 29 篇 national enginee...
  • 28 篇 college of compu...
  • 27 篇 department of bi...
  • 26 篇 department of ar...
  • 26 篇 shanghai artific...
  • 26 篇 department of ar...
  • 25 篇 department of ar...
  • 25 篇 school of artifi...
  • 24 篇 school of data s...
  • 24 篇 gaoling school o...
  • 24 篇 department of co...
  • 23 篇 centre of resear...

作者

  • 41 篇 zhang mengjie
  • 35 篇 xue bing
  • 27 篇 shanmugasundaram...
  • 27 篇 ashwini kodipall...
  • 27 篇 prateek verma
  • 25 篇 kodipalli ashwin...
  • 22 篇 seifedine kadry
  • 22 篇 mahalle parikshi...
  • 21 篇 von lilienfeld o...
  • 20 篇 dhatterwal jagji...
  • 20 篇 shen linlin
  • 18 篇 li tianrui
  • 18 篇 mei yi
  • 18 篇 jagjit singh dha...
  • 18 篇 hariharan shanmu...
  • 17 篇 ding weiping
  • 16 篇 tao dacheng
  • 16 篇 samek wojciech
  • 16 篇 verma prateek
  • 15 篇 vimal s.

语言

  • 4,698 篇 英文
  • 852 篇 其他
  • 30 篇 中文
  • 3 篇 法文
  • 2 篇 德文
  • 2 篇 斯洛文尼亚文
  • 1 篇 土耳其文
检索条件"机构=Artificial Intelligence and Data Science Engineering"
5571 条 记 录,以下是4981-4990 订阅
排序:
DeepKAF: A Heterogeneous CBR Deep Learning Approach for NLP Prototyping
DeepKAF: A Heterogeneous CBR Deep Learning Approach for NLP ...
收藏 引用
2020 International Conference on INnovations in Intelligent SysTems and Applications, INISTA 2020
作者: Amin, Kareem Kapetanakis, Stelios Polatidis, Nikolaos Althoff, Klaus-Dieter Dengel, Andreas Smart Data and Knowledge Services German Research Center for Artificial Intelligence Technische Universität Kaiserslautern Kaiserslautern Germany School of Computing Engineering and Mathematics University of Brighton Brighton United Kingdom Intelligent Information Systems Lab Institute of Computer Science University of Hildesheim Hildesheim Germany
With widespread modernization, digitization and transformations of most of industries, artificial intelligence (AI) has become the key enabler in that modernization journey. AI offers substantial capabilities to solve... 详细信息
来源: 评论
Combining Hammett σ constants for ∆-machine learning and catalyst discovery
arXiv
收藏 引用
arXiv 2024年
作者: Rakotonirina, V. Diana Bragato, Marco Heinen, Stefan von Lilienfeld, O. Anatole Department of Materials Science and Engineering University of Toronto St. George Campus TorontoON Canada Faculty of Physics University of Vienna Kolingasse 1416 WienAT1090 Austria Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Chemical Physics Theory Group Department of Chemistry University of Toronto St. George Campus TorontoON Canada ML Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Department of Physics University of Toronto St. George Campus TorontoON Canada Acceleration Consortium University of Toronto TorontoON Canada
We study the applicability of the Hammett-inspired product (HIP) Ansatz to model relative substrate binding within homogenous organometallic catalysis, assigning σ and ρ to ligands and metals, respectively. Implemen... 详细信息
来源: 评论
Multi-view Point Cloud Registration based on Evolutionary Multitasking with Bi-Channel Knowledge Sharing Mechanism
arXiv
收藏 引用
arXiv 2022年
作者: Wu, Yue Liu, Yibo Gong, Maoguo Gong, Peiran Li, Hao Tang, Zedong Miao, Qiguang Ma, Wenping The School of Computer Science and Technology Key Laboratory of Big Data and Intelligent Vision Xidian University Xi’an710071 China The School of Electronic Engineering Key Laboratory of Intelligent Perception and Image Understanding Ministry of Education Xidian University Xi’an710071 China The School of Artificial Intelligence Key Laboratory of Intelligent Perception and Image Understanding Ministry of Education Xidian University Xi’an710071 China
Multi-view point cloud registration is fundamental in 3D reconstruction. Since there are close connections between point clouds captured from different viewpoints, registration performance can be enhanced if these con... 详细信息
来源: 评论
Breast Cancer Immunohistochemical Image Generation: a Benchmark dataset and Challenge Review
arXiv
收藏 引用
arXiv 2023年
作者: Zhu, Chuang Liu, Shengjie Yu, Zekuan Xu, Feng Aggarwal, Arpit Corredor, Germán Madabhushi, Anant Qu, Qixun Fan, Hongwei Li, Fangda Li, Yueheng Guan, Xianchao Zhang, Yongbing Singh, Vivek Kumar Akram, Farhan Sarker, Md Mostafa Kamal Shi, Zhongyue Jin, Mulan The School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China Academy for Engineering and Technology Fudan University Shanghai China Beijing Chaoyang Hospital Capital Medical University Beijing China Biomedical Engineering Department Georgia Tech and Emory University United States The Atlanta Veterans Affairs Medical Center United States Biomedical Engineering Department Emory University United States Data Science Institute Imperial College London United Kingdom The School of Computer and Electrical Engineering Purdue University United States The School of Computer Science and Technology Harbin Institute of Technology Shenzhen China The Department of Computer Engineering and Mathematics Rovira I Virgili University Spain The Department of Pathology and Clinical Bioinformatics Erasmus Medical Center Netherlands The Institute of Biomedical Engineering University of Oxford Oxford United Kingdom
For invasive breast cancer, immunohistochemical (IHC) techniques are often used to detect the expression level of human epidermal growth factor receptor-2 (HER2) in breast tissue to formulate a precise treatment plan.... 详细信息
来源: 评论
Predicting at-risk students in the early stage of a blended learning course via machine learning using limited data
收藏 引用
Computers and Education: artificial intelligence 2024年 7卷
作者: Azizah, Zahra Ohyama, Tomoya Zhao, Xiumin Ohkawa, Yuichi Mitsuishi, Takashi Graduate School of Information Science Tohoku University 6-3-09 Aoba Aramaki-aza Aoba-ku Miyagi Sendai980-8579 Japan Department of Computer and Informatics Engineering Politeknik Negeri Jakarta Jl. Prof. DR. G.A. Siwabessy Kampus Universitas Indonesia Jawa Barat Depok16425 Indonesia Center for Data-driven Science and Artificial Intelligence Tohoku University 41 Kawauchi Aoba-ku Miyagi Sendai980-8576 Japan Institute for Excellence in Higher Education Tohoku University 41 Kawauchi Aoba-ku Miyagi Sendai980-8576 Japan Graduate School of Education Tohoku University 27-1 Kawauchi Aoba-ku Miyagi Sendai980-8576 Japan
Academic failure is a persistent challenge in education. Despite the limited available data, in this study, we focus on identifying at-risk students in a blended learning (BL) course. Several motivational variables ar... 详细信息
来源: 评论
An improved entropy function for the intuitionistic fuzzy sets with application to cloud vendor selection
收藏 引用
Decision Analytics Journal 2023年 7卷
作者: Krishankumar, Raghunathan Ravichandran, K.S. Aggarwal, Manish Pamucar, Dragan Information Technology Systems and Analytics Area Indian Institute of Management Bodh Gaya Bihar Bodh Gaya 824234 India Department of Mathematics Amrita School of Physical Sciences Coimbatore Amrita Vishwa Vidyapeetham India School of Artificial Intelligence and Data Science IIT Jodhpur Jodhpur India Digital Humanties IIT Jodhpur Jodhpur India Faculty of Organizational Sciences University of Belgrade Serbia College of Engineering Yuan Ze University Taiwan
This study proposes a novel entropy function for the intuitionistic fuzzy sets to improve the existing fuzzy entropy measure. We introduce an attitude-based entropy measure by methodically calculating the experts’ at... 详细信息
来源: 评论
Estimation of the main air pollutants from different biomasses under combustion atmospheres by artificial neural networks
收藏 引用
Chemosphere 2024年 352卷 141484页
作者: Monteiro, Thalyssa Oliveira Alves, Pedro Augusto Araújo da Silva de Almeida Nava Barradas Filho, Alex Oliveira Villa-Vélez, Harvey Alexander Cruz, Glauber Postgraduate Program in Mechanical Engineering (PPGMEC) Department of Mechanics and Materials Federal Institute of Education Science and Technology of Maranhão (IFMA) Maranhão São Luís Brazil Postgraduate Program in Computer Science and Computational Mathematics (PPG-CCMC) Department of Computer Science University of São Paulo (USP) São Carlos São Paulo Brazil Data Analysis and Artificial Intelligence Laboratory (DARTi) Department of Computational Engineering Federal University of Maranhão (UFMA) Maranhão São Luís Brazil Department of Chemical Engineering Federal University of Maranhão (UFMA) Maranhão São Luís Brazil Processes and Thermal Systems Laboratory (LPSisTer) Department of Mechanical Engineering Federal University of Maranhão (UFMA) Maranhão São Luís Brazil
The production of biofuels to be used as bioenergy under combustion processes generates some gaseous emissions (CO, CO2, NOx, SOx, and other pollutants), affecting living organisms and requiring careful assessments. H... 详细信息
来源: 评论
ML_BrainDetection: An Intelligent Model for Brain Tumor Identification Using Machine Learning
ML_BrainDetection: An Intelligent Model for Brain Tumor Iden...
收藏 引用
Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), International
作者: Diaa Salama AbdElminaam Magda M. Madbouly Mohamed S Farag Ibrahim A Gomaa Magdy Abd-Elghany Zeid Laith Abualigah Faculty of Computer Science Misr International University Cairo Egypt Faculty of Computers and Artificial Intelligence Benha University Benha Egypt Faculty of Computer and Data Science Alexandria University Alexandria Egypt Computer Science Department Alobour high institute for computer and informatics Cairo Egypt Computer Science Department Al al-Bayt University Mafraq Jordan Department of Electrical and Computer Engineering Lebanese American University Byblos Lebanon Hourani Center for Applied Scientific Research Al-Ahliyya Amman University Amman Jordan MEU Research Unit Middle East University Amman Jordan School of Computer Sciences Universiti Sains Malaysia Pulau Pinang Malaysia School of Engineering and Technology Sunway University Malaysia Petaling Jaya Malaysia
Brain tumors are one of the greatest causes of death worldwide. Due to that, early diagnosis and classification of the tumor would surely help increase the chance of survival for patients worldwide. However, classifyi...
来源: 评论
A hybrid quantum-classical classifier based on branching multi-scale entanglement renormalization ansatz
arXiv
收藏 引用
arXiv 2023年
作者: Hou, Yan-Yan Li, Jian Chen, Xiu-Bo Ye, Chong-Qiang School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China College of Information Science and Engineering ZaoZhuang University Shandong Zaozhuang277160 China School of Cyberspace Security Security Beijing University of Posts Telecommunications Beijing100876 China Information Security Center State Key Laboratory of Networking and Switching Technology Beijing University of Post and Telecommunications Beijing100876 China GuiZhou University Guizhou Provincial Key Laboratory of Public Big Data Guizhou Guiyang550025 China
Metric learning plays an essential role in image analysis and classification, and it has attracted more and more attention. In this paper, we propose a quantum adversarial metric learning (QAML) model based on the tri... 详细信息
来源: 评论
ML_Recognition: A Robust Model for Handwritten Digit Recognition Using Machine Learning Classifiers
ML_Recognition: A Robust Model for Handwritten Digit Recogni...
收藏 引用
Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), International
作者: Diaa Salama AbdElminaam Magda M. Madbouly Magdy Abd-Elghany Zeid Laith Abualigah Faculty of Computer Science Misr International University Cairo Egypt Faculty of Computers and Artificial Intelligence Benha University Benha Egypt Faculty of Computer and Data Science Alexandria University Alexandria Egypt Ibrahim Abd Elatif Gomaa Computer Science Department Alobour high institute for computer and informatics Cairo Egypt Computer Science Department Al al-Bayt University Mafraq Jordan Department of Electrical and Computer Engineering Lebanese American University Byblos Lebanon Hourani Center for Applied Scientific Research Al-Ahliyya Amman University Amman Jordan MEU Research Unit Middle East University Amman Jordan School of Computer Sciences Universiti Sains Malaysia Pulau Pinang Malaysia School of Engineering and Technology Sunway University Malaysia Petaling Jaya Malaysia
Handwritten digit recognition is a branch of machine learning in which a computer is taught to recognize hand-written numbers. Classification and regression are applied using deep learning and machine learning algorit...
来源: 评论