咨询与建议

限定检索结果

文献类型

  • 1,607 篇 会议
  • 372 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 1,981 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,014 篇 工学
    • 785 篇 计算机科学与技术...
    • 676 篇 软件工程
    • 261 篇 信息与通信工程
    • 208 篇 控制科学与工程
    • 152 篇 电气工程
    • 148 篇 生物工程
    • 137 篇 生物医学工程(可授...
    • 115 篇 光学工程
    • 99 篇 电子科学与技术(可...
    • 94 篇 安全科学与工程
    • 92 篇 网络空间安全
    • 68 篇 交通运输工程
    • 66 篇 仪器科学与技术
    • 65 篇 机械工程
    • 54 篇 化学工程与技术
    • 53 篇 动力工程及工程热...
  • 541 篇 理学
    • 252 篇 数学
    • 168 篇 生物学
    • 147 篇 物理学
    • 107 篇 统计学(可授理学、...
    • 71 篇 化学
  • 319 篇 管理学
    • 223 篇 管理科学与工程(可...
    • 122 篇 工商管理
    • 118 篇 图书情报与档案管...
  • 167 篇 医学
    • 124 篇 临床医学
    • 123 篇 基础医学(可授医学...
    • 108 篇 公共卫生与预防医...
    • 61 篇 药学(可授医学、理...
  • 76 篇 法学
    • 67 篇 社会学
  • 55 篇 经济学
    • 55 篇 应用经济学
  • 49 篇 农学
  • 23 篇 教育学
  • 13 篇 文学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 239 篇 accuracy
  • 158 篇 real-time system...
  • 148 篇 deep learning
  • 103 篇 convolutional ne...
  • 97 篇 training
  • 96 篇 predictive model...
  • 96 篇 machine learning
  • 82 篇 feature extracti...
  • 75 篇 computational mo...
  • 74 篇 machine learning...
  • 70 篇 medical services
  • 69 篇 support vector m...
  • 66 篇 data models
  • 63 篇 internet of thin...
  • 55 篇 optimization
  • 54 篇 reliability
  • 50 篇 reviews
  • 48 篇 artificial intel...
  • 47 篇 prediction algor...
  • 45 篇 monitoring

机构

  • 50 篇 nitte meenakshi ...
  • 42 篇 department of ar...
  • 41 篇 lovely professio...
  • 32 篇 department of ar...
  • 32 篇 department of co...
  • 25 篇 lamarr institute...
  • 24 篇 rajalakshmi engi...
  • 21 篇 department of ar...
  • 20 篇 department of ar...
  • 20 篇 machine learning...
  • 19 篇 east west instit...
  • 19 篇 department of co...
  • 19 篇 new horizon coll...
  • 18 篇 the department o...
  • 18 篇 the lamarr insti...
  • 18 篇 department of ar...
  • 18 篇 vector institute...
  • 18 篇 division of arti...
  • 15 篇 college of techn...
  • 15 篇 university of bo...

作者

  • 42 篇 prateek verma
  • 42 篇 piyush kumar par...
  • 41 篇 pareek piyush ku...
  • 36 篇 mohsen guizani
  • 30 篇 stachniss cyrill
  • 26 篇 verma prateek
  • 23 篇 guizani mohsen
  • 19 篇 behley jens
  • 18 篇 von lilienfeld o...
  • 16 篇 uma reddy
  • 16 篇 cyrill stachniss
  • 16 篇 vijay k.
  • 14 篇 amandeep nagpal
  • 14 篇 swapnil gundewar
  • 13 篇 zhang kun
  • 12 篇 aditya barhate
  • 12 篇 madhura g.k.
  • 12 篇 abhay tale
  • 12 篇 reddy uma
  • 11 篇 utkarsha pachara...

语言

  • 1,449 篇 英文
  • 530 篇 其他
  • 6 篇 中文
  • 1 篇 斯洛文尼亚文
检索条件"机构=Artificial Intelligence and Machine Learning Engineering"
1981 条 记 录,以下是1931-1940 订阅
排序:
DOME Registry: Implementing community-wide recommendations for reporting supervised machine learning in biology
arXiv
收藏 引用
arXiv 2024年
作者: Attafi, Omar Abdelghani Clementel, Damiano Kyritsis, Konstantinos Capriotti, Emidio Farrell, Gavin Fragkouli, Styliani-Christina Castro, Leyla Jael Hatos, András Lenaerts, Tom Mazurenko, Stanislav Mozaffari, Soroush Pradelli, Franco Ruch, Patrick Savojardo, Castrense Turina, Paola Zambelli, Federico Piovesan, Damiano Monzon, Alexander Miguel Psomopoulos, Fotis Tosatto, Silvio C.E. Department of Biomedical Sciences University of Padova Italy Institute of Applied Biosciences Centre for Research and Technology Hellas Thessaloniki Greece Department of Pharmacy and Biotechnology University of Bologna Bologna Italy ELIXIR Hub Hinxton Cambridge United Kingdom Department of Biology National and Kapodistrian University of Athens Athens Greece ZB Med Information Centre for Life Sciences Cologne Germany Department of Oncology Geneva University Hospitals Geneva Switzerland Department of Computational Biology University of Lausanne Lausanne Switzerland Swiss Institute of Bioinformatics Lausanne Switzerland Swiss Cancer Center Léman Lausanne Switzerland Interuniversity Institute of Bioinformatics in Brussels Université Libre de Bruxelles Vrije Universiteit Brussel Brussels1050 Belgium Machine Learning Group Université Libre de Bruxelles Street Belgium Artificial Intelligence Laboratory Vrije Universiteit Brussels Brussels Belgium Loschmidt Laboratories Department of Experimental Biology and RECETOX Faculty of Science Czech Republic Masaryk University Brno Czech Republic International Clinical Research Centre St. Anne's Hospital Brno Czech Republic HES-SO - HEG Geneva Geneva Switzerland SIB Swiss Institute of Bioinformatics Geneva Switzerland Dept. of Biosciences University of Milan Italy Bari Italy Department of Information Engineering University of Padova Italy Bari Italy
Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The DOME recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key... 详细信息
来源: 评论
From Chaos to Coherence: Effects of High-Order Synaptic Correlations on Neural Dynamics
arXiv
收藏 引用
arXiv 2025年
作者: Sherf, Nimrod Pitkow, Xaq Josić, Krešimir Bassler, Kevin E. Department of Mathematics University of Houston HoustonTX United States Department of Neuroscience Baylor College of Medicine HoustonTX United States Neuroscience Institute Carnegie Mellon University PittsburghPA United States Department of Machine Learning The School of Computer Science Carnegie Mellon University PittsburghPA United States Departments of Electrical and Computer Engineering and Computer Science Rice University HoustonTX United States NSF AI Institute for Artificial and Natural Intelligence United States Department of Biology and Biochemistry University of Houston HoustonTX United States Department of Physics University of Houston HoustonTX United States Texas Center for Superconductivity University of Houston HoustonTX United States
Recurrent Neural Network models have elucidated the interplay between structure and dynamics in biological neural networks, particularly the emergence of irregular and rhythmic activities in cortex. However, most stud... 详细信息
来源: 评论
The state-of-the-art in Cardiac MRI Reconstruction: Results of the CMRxRecon Challenge in MICCAI 2023
arXiv
收藏 引用
arXiv 2024年
作者: Lyu, Jun Qin, Chen Wang, Shuo Wang, Fanwen Li, Yan Wang, Zi Guo, Kunyuan Ouyang, Cheng Tänzer, Michael Liu, Meng Sun, Longyu Sun, Mengting Li, Qin Shi, Zhang Hua, Sha Li, Hao Chen, Zhensen Zhang, Zhenlin Xin, Bingyu Metaxas, Dimitris N. Yiasemis, George Teuwen, Jonas Zhang, Liping Chen, Weitian Pang, Yanwei Liu, Xiaohan Razumov, Artem Dylov, Dmitry V. Dou, Quan Yan, Kang Xue, Yuyang Du, Yuning Dietlmeier, Julia Garcia-Cabrera, Carles Hemidi, Ziad Al-Haj Vogt, Nora Xu, Ziqiang Zhang, Yajing Chu, Ying-Hua Chen, Weibo Bai, Wenjia Zhuang, Xiahai Qin, Jing Wu, Lianmin Yang, Guang Qu, Xiaobo Wang, He Wang, Chengyan Psychiatry Neuroimaging Laboratory Brigham and Women’s Hospital Harvard Medical School 399 Revolution Drive BostonMA02215 United States Department of Electrical and Electronic Engineering & I-X Imperial College London United Kingdom Digital Medical Research Center School of Basic Medical Sciences Fudan University Shanghai China Department of Bioengineering & I-X Imperial College London LondonW12 7SL United Kingdom Cardiovascular Magnetic Resonance Unit Royal Brompton Hospital Guy’s and St Thomas’ NHS Foundation Trust LondonSW3 6NP United Kingdom Department of Radiology Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China Department of Electronic Science Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance National Institute for Data Science in Health and Medicine Institute of Artificial Intelligence Xiamen University Xiamen361102 China Department of Computing Department of Brain Sciences Imperial College London LondonSW7 2AZ United Kingdom Human Phenome Institute Fudan University 825 Zhangheng Road Pudong New District Shanghai201203 China Department of Radiology Zhongshan Hospital Fudan University Shanghai China Department of Cardiovascular Medicine Ruijin Hospital Lu Wan Branch Shanghai Jiao Tong University School of Medicine Shanghai China Institute of Science and Technology for Brain-Inspired Intelligence Fudan University Shanghai200433 China Department of Computer Science Rutgers University PiscatawayNJ08854 United States AI for Oncology Netherlands Cancer Institute Plesmanlaan 121 Amsterdam1066 CX Netherlands Department of Imaging and Interventional Radiology The Chinese University of Hong Kong Hong Kong TJK-BIIT Lab School of Electrical and Information Engineering Tianjin University Tianjin300072 China Skolkovo Institute Of Science And Technology Center for Artificial Intelligence Technology 30/1 Bolshoy blvd. Moscow121205 Russia Department of Biomedical Engineering University of Virginia
Cardiac magnetic resonance imaging (MRI) provides detailed and quantitative evaluation of the heart’s structure, function, and tissue characteristics with high-resolution spatial-temporal imaging. However, its slow i... 详细信息
来源: 评论
Structuring the Problem Space for Model-Based Systems engineering
收藏 引用
Insight 2019年 第1期22卷 45-50页
作者: Wrigley, J. Craig Wide-ranging experience of systems engineering for over 35 years through innovative work on systems ranging from new demand access protocols for military data links through to large scale intelligence processing systems applying artificial intelligence and machine learning and assessments of quantum technologies.
Systems engineering is evolving from a largely text-based endeavour towards a more graphical and model-based approach. While modelling of the structural aspects of a system is well developed, the modelling of requirem... 详细信息
来源: 评论
Variational pretraining for semi-supervised text classification
arXiv
收藏 引用
arXiv 2019年
作者: Gururangan, Suchin Dang, Tam Card, Dallas Smith, Noah A. Allen Institute for Artificial Intelligence SeattleWA United States Paul G. Allen School of Computer Science & Engineering University of Washington SeattleWA United States Machine Learning Department Carnegie Mellon University PittsburghPA United States
We introduce VAMPIRE,1a lightweight pretraining framework for effective text classification when data and computing resources are limited. We pretrain a unigram document model as a variational autoencoder on in-domain... 详细信息
来源: 评论
Optimal operation of cryogenic calorimeters through deep reinforcement learning
arXiv
收藏 引用
arXiv 2023年
作者: Angloher, G. Banik, S. Benato, G. Bento, A. Bertolini, A. Breier, R. Bucci, C. Burkhart, J. Canonica, L. D’Addabbo, A. Di Lorenzo, S. Einfalt, L. Erb, A. Feilitzsch, F.V. Fichtinger, S. Fuchs, D. Garai, A. Ghete, V.M. Gorla, P. Guillaumon, P.V. Gupta, S. Hauff, D. Ješkovský, M. Jochum, J. Kaznacheeva, M. Kinast, A. Kuckuk, S. Kluck, H. Kraus, H. Langenkämper, A. Mancuso, M. Marini, L. Mauri, B. Meyer, L. Mokina, V. Niedermayer, K. Olmi, M. Ortmann, T. Pagliarone, C. Pattavina, L. Petricca, F. Potzel, W. Povinec, P. Pröbst, F. Pucci, F. Reindl, F. Rothe, J. Schäffner, K. Schieck, J. Schönert, S. Schwertner, C. Stahlberg, M. Stodolsky, L. Strandhagen, C. Strauss, R. Usherov, I. Wagner, F. Wagner, V. Willers, M. Zema, V. Heitzinger, C. Waltenberger, W. Max-Planck-Institut für Physik MünchenD-80805 Germany Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften WienA-1050 Austria Atominstitut Technische Universität Wien WienA-1020 Austria INFN Laboratori Nazionali del Gran Sasso AssergiI-67100 Italy Comenius University Faculty of Mathematics Physics and Informatics Bratislava84248 Slovakia Physik-Department TUM School of Natural Sciences Technische Universität München GarchingD-85747 Germany Eberhard-Karls-Universität Tübingen TübingenD-72076 Germany Department of Physics University of Oxford OxfordOX1 3RH United Kingdom Institute of Information Systems Engineering Technische Universität Wien WienA-1040 Austria Center for Artificial Intelligence and Machine Learning Technische Universität Wien WienA-1040 Austria LIBPhys-UC Departamento de Fisica Universidade de Coimbra CoimbraP3004 516 Portugal Walther-Meißner-Institut für Tieftemperaturforschung GarchingD-85748 Germany Dipartimento di Ingegneria Civile e Meccanica Universitá degli Studi di Cassino e del Lazio Meridionale CassinoI-03043 Italy
Cryogenic phonon detectors with transition-edge sensors achieve the best sensitivity to sub-GeV/c2 dark matter interactions with nuclei in current direct detection experiments. In such devices, the temperature of the ... 详细信息
来源: 评论
Combining machine learning and computational chemistry for predictive insights into chemical systems
arXiv
收藏 引用
arXiv 2021年
作者: Keith, John A. Vassilev-Galindo, Valentin Cheng, Bingqing Chmiela, Stefan Gastegger, Michael Müller, Klaus-Robert Tkatchenko, Alexandre Department of Chemical and Petroleum Engineering Swanson School of Engineering University of Pittsburgh Pittsburgh United States Department of Physics and Materials Science University of Luxembourg Luxembourg CityL-1511 Luxembourg Accelerate Programme for Scientific Discovery Department of Computer Science and Technology 15 J. J. Thomson Avenue CambridgeCB3 0FD United Kingdom Cavendish Laboratory University of Cambridge J. J. Thomson Avenue CambridgeCB3 0HE United Kingdom Department of Software Engineering and Theoretical Computer Science Technische Universität Berlin Berlin10587 Germany Machine Learning Group Technische Universität Berlin Berlin10587 Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of Max-Planck-Institut für Informatik Saarbrücken Germany Google Research Brain team Berlin Germany
machine learning models are poised to make a transformative impact on chemical sciences by dramatically accelerating computational algorithms and amplifying insights available from computational chemistry methods. How... 详细信息
来源: 评论
Lessons Learned from Assessing Trustworthy AI in Practice
收藏 引用
Digital Society 2023年 第3期2卷 1-25页
作者: Vetter, Dennis Amann, Julia Bruneault, Frédérick Coffee, Megan Düdder, Boris Gallucci, Alessio Gilbert, Thomas Krendl Hagendorff, Thilo van Halem, Irmhild Hickman, Eleanore Hildt, Elisabeth Holm, Sune Kararigas, Georgios Kringen, Pedro Madai, Vince I. Wiinblad Mathez, Emilie Tithi, Jesmin Jahan Westerlund, Magnus Wurth, Renee Zicari, Roberto V. Computational Vision and Artificial Intelligence Lab Goethe University Frankfurt Frankfurt Am Main Germany Z-Inspection® Initiative Venice Italy Health Ethics and Policy Lab ETH Zurich Zurich Switzerland Strategy and Innovation Careum Foundation Zurich Switzerland Philosophie Departement Collège André-Laurendeau Montréal Canada École Des Médias Université du Québec À Montréal Montréal Canada Department of Medicine Division of Infectious Diseases and Immunology New York University Grossman School of Medicine New York City USA Department of Computer Science University of Copenhagen Copenhagen Denmark Digital Life Initiative Cornell Tech New York City USA Cluster of Excellence “Machine Learning: New Perspectives for Science” University of Tuebingen Tuebingen Germany School of Law University of Bristol Bristol UK Center for the Study of Ethics in the Professions Illinois Institute of Technology Chicago USA Department of Business Management and Analytics Arcada University of Applied Sciences Helsinki Finland Department of Food & Resource Economics University of Copenhagen Copenhagen Denmark Department of Physiology Faculty of Medicine University of Iceland Reykjavik Iceland QUEST Centre for Responsible Research Berlin Institute of Health Charité Universitätsmedizin Berlin Berlin Germany Faculty of Computing Engineering and the Built Environment School of Computing and Digital Technology Birmingham City University Birmingham UK Parallel Computing Labs Intel Santa Clara USA School of Economics Innovation and Technology Kristiania University College Oslo Norway Data Science Graduate School Seoul National University Seoul South Korea
Building artificial intelligence (AI) systems that adhere to ethical standards is a complex problem. Even though a multitude of guidelines for the design and development of such trustworthy AI systems exist, these gui...
来源: 评论
How compact?: Assessing compactness of representations through layer-wise pruning
arXiv
收藏 引用
arXiv 2019年
作者: Jung, Hyun-Joo Kim, Jaedeok Choe, Yoonsuck Machine Learning Lab Artificial Intelligence Center Samsung Research Samsung Electronics Co. 56 Seongchon-gil Secho-gu Seoul06765 Korea Republic of Department of Computer Science and Engineering Texas A&M University College StationTX77843 United States
Various forms of representations may arise in the many layers embedded in deep neural networks (DNNs). Of these, where can we find the most compact representation? We propose to use a pruning framework to answer this ... 详细信息
来源: 评论
Developing an Intelligent Resume Screening Tool With AI-Driven Analysis and Recommendation Features
Applied AI Letters
收藏 引用
Applied AI Letters 2025年 第2期6卷
作者: K. L. Abhishek M. Niranjanamurthy Shonit Aric Syed Immamul Ansarullah Anurag Sinha G. Tejani Mohd Asif Shah Department of Artificial Intelligence & Machine Learning BMS Institute of Technology Affiliated to Visvesvaraya Technological University Bangalore Karnataka India Software Engineer Fidelity Investments Bangalore India Department of Management Studies University of Kashmir North Campus Srinagar Jammu and Kashmir India Tech School Computer Science Department ICFAI University Ranchi Jharkhand India Department of Computer Science RC University Palamue Bishrampur Jharkhand India Jadara University Research Center Jadara University Amman Jordan Dean of Faculty Department of Economics Kardan University Kabul Afghanistan Centre for Research Impact & Outcome Chitkara University Institute of Engineering and Technology Chitkara University Rajpura Punjab India Chitkara Centre for Research and Development Chitkara University Baddi Himachal Pradesh India Division of Research and Development Lovely Professional University Phagwara Punjab India
Current resume screening relies on manual review, causing delays and errors in evaluating large volumes of resumes. Lack of automation and data extraction leads to inefficiencies and potential biases. Recruiters face ... 详细信息
来源: 评论