咨询与建议

限定检索结果

文献类型

  • 1,269 篇 会议
  • 261 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 1,531 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 766 篇 工学
    • 599 篇 计算机科学与技术...
    • 516 篇 软件工程
    • 194 篇 信息与通信工程
    • 151 篇 控制科学与工程
    • 125 篇 电气工程
    • 115 篇 生物医学工程(可授...
    • 115 篇 生物工程
    • 83 篇 光学工程
    • 80 篇 电子科学与技术(可...
    • 67 篇 网络空间安全
    • 66 篇 安全科学与工程
    • 57 篇 机械工程
    • 52 篇 仪器科学与技术
    • 51 篇 交通运输工程
    • 40 篇 化学工程与技术
  • 422 篇 理学
    • 205 篇 数学
    • 131 篇 生物学
    • 114 篇 物理学
    • 84 篇 统计学(可授理学、...
    • 60 篇 化学
    • 38 篇 系统科学
  • 247 篇 管理学
    • 165 篇 管理科学与工程(可...
    • 101 篇 图书情报与档案管...
    • 95 篇 工商管理
  • 141 篇 医学
    • 108 篇 临床医学
    • 107 篇 基础医学(可授医学...
    • 86 篇 公共卫生与预防医...
    • 58 篇 药学(可授医学、理...
  • 56 篇 法学
    • 48 篇 社会学
  • 46 篇 经济学
    • 46 篇 应用经济学
  • 35 篇 农学
  • 20 篇 教育学
  • 7 篇 文学
  • 3 篇 艺术学
  • 1 篇 哲学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 190 篇 accuracy
  • 123 篇 real-time system...
  • 118 篇 deep learning
  • 81 篇 convolutional ne...
  • 80 篇 machine learning
  • 78 篇 predictive model...
  • 77 篇 training
  • 71 篇 feature extracti...
  • 60 篇 support vector m...
  • 60 篇 computational mo...
  • 56 篇 internet of thin...
  • 56 篇 machine learning...
  • 55 篇 medical services
  • 53 篇 data models
  • 50 篇 optimization
  • 47 篇 reviews
  • 42 篇 reliability
  • 41 篇 prediction algor...
  • 41 篇 artificial intel...
  • 36 篇 technological in...

机构

  • 52 篇 nitte meenakshi ...
  • 43 篇 department of ar...
  • 39 篇 lovely professio...
  • 32 篇 department of co...
  • 21 篇 department of ar...
  • 19 篇 east west instit...
  • 19 篇 department of co...
  • 18 篇 department of ar...
  • 18 篇 division of arti...
  • 17 篇 department of ar...
  • 17 篇 machine learning...
  • 16 篇 new horizon coll...
  • 15 篇 college of techn...
  • 15 篇 department of ar...
  • 13 篇 institute of aer...
  • 12 篇 artificial intel...
  • 12 篇 datta meghe inst...
  • 12 篇 department of ar...
  • 12 篇 division of comp...
  • 12 篇 vector institute...

作者

  • 42 篇 prateek verma
  • 42 篇 piyush kumar par...
  • 41 篇 pareek piyush ku...
  • 29 篇 mohsen guizani
  • 28 篇 verma prateek
  • 15 篇 guizani mohsen
  • 14 篇 uma reddy
  • 14 篇 swapnil gundewar
  • 13 篇 amandeep nagpal
  • 12 篇 aditya barhate
  • 12 篇 madhura g.k.
  • 11 篇 utkarsha pachara...
  • 11 篇 abhay tale
  • 11 篇 rushikesh burle
  • 10 篇 xiaojiang du
  • 10 篇 tale abhay
  • 10 篇 reddy uma
  • 10 篇 sundaravadivel p...
  • 9 篇 von lilienfeld o...
  • 9 篇 n v uma reddy

语言

  • 1,128 篇 英文
  • 401 篇 其他
  • 6 篇 中文
  • 1 篇 斯洛文尼亚文
检索条件"机构=Artificial Intelligence and Machine Learning Faculty of Engineering and Technology"
1531 条 记 录,以下是1461-1470 订阅
排序:
UncertaintyFuseNet: Robust Uncertainty-aware Hierarchical Feature Fusion Model with Ensemble Monte Carlo Dropout for COVID-19 Detection
arXiv
收藏 引用
arXiv 2021年
作者: Abdar, Moloud Salari, Soorena Qahremani, Sina Lam, Hak-Keung Karray, Fakhri Hussain, Sadiq Khosravi, Abbas Acharya, U. Rajendra Makarenkov, Vladimir Nahavandi, Saeid Deakin University Australia The Harvard Paulson School of Engineering and Applied Sciences Harvard University AllstonMA02134 United States The Department of Electrical Engineering Sharif University of Technology Tehran Iran The Centre for Robotics Research Department of Engineering King’s College London London United Kingdom The Centre for Pattern Analysis and Machine Intelligence Department of Electrical and Computer Engineering University of Waterloo WaterlooON Canada The Department of Machine Learning Mohamed Bin Zayed University of Artificial Intelligence Abu Dhabi United Arab Emirates The System Administrator Dibrugarh University Dibrugarh India The Department of Electronics and Computer Engineering Ngee Ann Polytechnic Clementi Singapore The Department of Computer Science University of Quebec in Montreal MontrealQC Canada
The COVID-19 (Coronavirus disease 2019) pandemic has become a major global threat to human health and well-being Thus, the development of computer-aided detection (CAD) systems that are capable to accurately distingui... 详细信息
来源: 评论
Designing a Vertical Gallium Arsenide (GaAs) Channel High Electron Mobility Transistor (HEMT) for power applications in integrated circuit (IC) technology
收藏 引用
AIP Conference Proceedings 2024年 第1期3149卷
作者: B. S. Hari Bhaskar Roy M. Elangovan S. Kaliappan G. Pavithra T. C. Manjunath Department of Mechanical Engineering Kongu Engineering College Perundurai Erode Tamilnadu India Department of Artificial Intelligence and Machine Learning Asansol Engineering College Vivekananda Sarani Asansol West Bengal India Department of Aerospace Engineering SNS College of Technology Coimbatore Tamilnadu India Division of Research and Development Lovely Professional University Jalandhar - Delhi G.T. Road Phagwara Punjab India Department of Electronics & Communication Engg. Dayananda Sagar College of Engg. Bengaluru Karnataka India
The research article investigates the development of Vertical Gallium Arsenide (GaAs) Channel High Electron Mobility Transistor (HEMT) for Power Applications in IC technology. This specialized transistor, the Vertical...
来源: 评论
Integrating Speech-to-Text for Image Generation Using Generative Adversarial Networks
收藏 引用
Computer Modeling in engineering & Sciences 2025年 第5期143卷 2001-2026页
作者: Smita Mahajan Shilpa Gite Biswajeet Pradhan Abdullah Alamri Shaunak Inamdar Deva Shriyansh Akshat Ashish Shah Shruti Agarwal Artificial Intelligence and Machine Learning Department Symbiosis Institute of TechnologyPune412115India Symbiosis Centre of Applied AI(SCAAI) Symbiosis Institute of TechnologyPune412115India Centre for Advanced Modelling and Geospatial Information Systems(CAMGIS) School of Civil and Environmental EngineeringUniversity of Technology SydneySydneyNSW 2007Australia Department of Geology and Geophysics College of ScienceKing Saud UniversityRiyadhl451Saudi Arabia Department of Computer Science and Enginering Symbiosis Institute of TechnologyPune412115India
The development of generative architectures has resulted in numerous novel deep-learning models that generate images using text ***,humans naturally use speech for visualization ***,this paper proposes an architecture... 详细信息
来源: 评论
FXAM: A Unified and Fast Interpretable Model for Predictive Analytics
arXiv
收藏 引用
arXiv 2021年
作者: Jiang, Yuanyuan Ding, Rui Qiao, Tianchi Zhu, Yunan Han, Shi Zhang, Dongmei School of Statistics Renmin University of China Haidian District Beijing100872 China Microsoft Research Asia Haidian District Beijing100080 China School of Computer Science and Engineering Southeast University Jiangsu Province Nanjing211189 China School of Information Science and Technology University of Science and Technology of China Anhui Province He Fei230031 China Department of Machine Learning Mohamed bin Zayed University of Artificial Intelligence Masdar City Abu Dhabi United Arab Emirates
Predictive analytics aims to build machine learning models to predict behavior patterns and use predictions to guide decision-making. Predictive analytics is human involved, thus the machine learning model is preferre... 详细信息
来源: 评论
Mixture of Experts-Enabled Parallel Scheduling and Processing for Vehicular Generative AI Services
收藏 引用
IEEE Transactions on Cognitive Communications and Networking 2025年
作者: Xie, Gaochang Xiong, Zehui Xie, Renchao Deng, Xiumei Guo, Song Guizani, Mohsen Han, Zhu Beijing University of Posts and Telecommunication State Key Laboratory of Networking and Switching Technology Beijing100876 China Purple Mountain Laboratories Nanjing211111 China Singapore University of Technology and Design Information Systems Technology and Design Pillar 487372 Singapore The Hong Kong University of Science and Technology Department of Computer Science and Engineering Hong Kong Mohammad Bin Zayed University of Artificial Intelligence Machine Learning Department Abu Dhabi United Arab Emirates University of Houston Department of Electrical and Computer Engineering HoustonTX77004 United States Kyung Hee University Department of Computer Science and Engineering Seoul446-701 Korea Republic of
Foundation models (FMs) have revolutionized generative AI (GAI) lifecycle with their pre-trained intelligence capabilities. While the recent success of web-based models like GPT-4 has spurred interest in extending FMs... 详细信息
来源: 评论
Multi-label Classification with High-rank and High-order Label Correlations
arXiv
收藏 引用
arXiv 2022年
作者: Si, Chongjie Jia, Yuheng Wang, Ran Zhang, Min-Ling Feng, Yanghe Qu, Chongxiao The Chien-Shiung Wu College Southeast University Nanjing210096 China The MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai200240 China The School of Computer Science and Engineering Southeast University Nanjing210096 China Ministry of Education China School of Computing & Information Sciences Caritas Institute of Higher Education Hong Kong The Key Laboratory of Computer Network and Information Integration Southeast University Ministry of Education China The School of Mathematical Science Shenzhen University Shenzhen518060 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China The College of Systems Engineering National University of Defense Technology China The 52nd Research Institute of China Electronics Technology Group China
Exploiting label correlations is important to multi-label classification. Previous methods capture the high-order label correlations mainly by transforming the label matrix to a latent label space with low-rank matrix... 详细信息
来源: 评论
Enhancing mobility for the visually impaired with artificial intelligence and machine learning in IKSHANA
收藏 引用
AIP Conference Proceedings 2024年 第1期3149卷
作者: Praveen Rathod D. N. Kavya Atul Gupta S. Kaliappan G. Pavithra T. C. Manjunath Dept. of Mechanical Engineering Vishwakarma Institute of Information Technology Pune India Dept. of Artificial Intelligence and Machine Learning Dayananda Sagar College of Engineering Banglore India Higher Education Madhya Pradesh Govt. College Ashoknagar Madhya Pradesh India Division of Research and Development Lovely Professional University Phagwara Punjab India Dept. of Electronics & Communication Engg. Dayananda Sagar College of Engg. Bengaluru Karnataka India
This paper explores the utilization of artificial intelligence and machine learning algorithms to empower visually impaired individuals, enabling satisfactory movement in their daily lives. The research focuses on enh...
来源: 评论
LNQ 2023 challenge: Benchmark of weakly-supervised techniques for mediastinal lymph node quantification
arXiv
收藏 引用
arXiv 2024年
作者: Dorent, Reuben Khajavi, Roya Idris, Tagwa Ziegler, Erik Somarouthu, Bhanusupriya Jacene, Heather LaCasce, Ann Deissler, Jonathan Ehrhardt, Jan Engelson, Sofija Fischer, Stefan M. Gu, Yun Handels, Heinz Kasai, Satoshi Kondo, Satoshi Maier-Hein, Klaus Schnabel, Julia A. Wang, Guotai Wang, Litingyu Wald, Tassilo Yang, Guang-Zhong Zhang, Hanxiao Zhang, Minghui Pieper, Steve Harris, Gordon Kikinis, Ron Kapur, Tina Brigham and Women’s Hospital Harvard Medical School BostonMA United States Massachusetts General Hospital Harvard Medical School BostonMA United States Yunu Inc. CaryNC United States Isomics Inc CambridgeMA United States Dana-Farber Cancer Institute BostonMA United States Technical University Munich Munich Germany Institute of Machine Learning in Biomedical Imaging Helmholtz Munich Munich Germany Munich Germany School of Biomedical Engineering and Imaging Sciences King’s College London London United Kingdom Institute of Medical Informatics University of Lübeck Lübeck Germany German Research Center for Artificial Intelligence Lübeck Germany Niigata University of Health and Welfare Niigata Japan Muroran Institute of Technology Hokkaido Japan Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China University of Electronic Science and Technology of China Chengdu China Heidelberg Germany University of Heidelberg Heidelberg Germany Shanghai AI laboratory Shanghai China
Accurate assessment of lymph node size in 3D CT scans is crucial for cancer staging, therapeutic management, and monitoring treatment response. Existing state-of-the-art segmentation frameworks in medical imaging ofte... 详细信息
来源: 评论
Supervised learning in the presence of concept drift a modelling framework
arXiv
收藏 引用
arXiv 2020年
作者: Straat, Michiel Abadi, Fthi Kan, Zhuoyun Göpfert, Christina Hammer, Barbara Biehl, Michael Bernoulli Institute for Mathematics Computer Science and Artificial Intelligence University of Groningen Nijenborgh 9 Groningen9747 AG Netherlands Aksum University Institute of Engineering and Technology Computing Science Department Axum Tigray Ethiopia Bielefeld University CITEC Machine Learning Group Bielefeld33594 Germany
We present a modelling framework for the investigation of supervised learning in non-stationary environments. Specifically, we model two example types of learning systems: prototype-based learning Vector Quantization ... 详细信息
来源: 评论
Extensions of the open-source framework Aerostack 3.0 for the development of more interactive flights between UAVs
Extensions of the open-source framework Aerostack 3.0 for th...
收藏 引用
International Conference on Unmanned Aircraft Systems (ICUAS)
作者: Wojciech Giernacki Jacek Cieślak Martin Molina Pascual Campoy Institute of Robotics and Machine Intelligence Faculty of Control Robotics and Electrical Engineering Poznan University of Technology Poznań Poland Department of Artificial Intelligence Technical University of Madrid (UPM) Madrid Spain Computer Vision and Aerial Robotics (CVAR) Centre for Automation and Robotics Technical University of Madrid (UPM) Madrid Spain
The basis for properly verified R&D works is to provide reliable prototyping tools at three most important stages: computer simulation, laboratory tests and real-world experiments. In the laboratory-limited condit... 详细信息
来源: 评论