咨询与建议

限定检索结果

文献类型

  • 1,252 篇 会议
  • 478 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 1,731 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 933 篇 工学
    • 731 篇 计算机科学与技术...
    • 628 篇 软件工程
    • 221 篇 信息与通信工程
    • 163 篇 控制科学与工程
    • 140 篇 电气工程
    • 136 篇 生物工程
    • 126 篇 生物医学工程(可授...
    • 95 篇 光学工程
    • 92 篇 电子科学与技术(可...
    • 67 篇 网络空间安全
    • 62 篇 安全科学与工程
    • 59 篇 机械工程
    • 55 篇 仪器科学与技术
    • 50 篇 化学工程与技术
    • 49 篇 交通运输工程
  • 517 篇 理学
    • 255 篇 数学
    • 156 篇 生物学
    • 130 篇 物理学
    • 109 篇 统计学(可授理学、...
    • 65 篇 化学
    • 42 篇 系统科学
  • 305 篇 管理学
    • 189 篇 管理科学与工程(可...
    • 138 篇 图书情报与档案管...
    • 101 篇 工商管理
  • 134 篇 医学
    • 105 篇 临床医学
    • 100 篇 基础医学(可授医学...
    • 80 篇 公共卫生与预防医...
    • 55 篇 药学(可授医学、理...
  • 58 篇 法学
    • 51 篇 社会学
  • 45 篇 经济学
    • 45 篇 应用经济学
  • 35 篇 农学
  • 23 篇 教育学
  • 7 篇 文学
  • 2 篇 艺术学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 165 篇 accuracy
  • 114 篇 deep learning
  • 102 篇 real-time system...
  • 84 篇 convolutional ne...
  • 83 篇 training
  • 75 篇 machine learning
  • 73 篇 feature extracti...
  • 64 篇 predictive model...
  • 63 篇 computational mo...
  • 50 篇 medical services
  • 48 篇 data models
  • 47 篇 support vector m...
  • 46 篇 optimization
  • 44 篇 machine learning...
  • 42 篇 internet of thin...
  • 40 篇 reliability
  • 31 篇 prediction algor...
  • 30 篇 monitoring
  • 30 篇 semantics
  • 29 篇 security

机构

  • 35 篇 nitte meenakshi ...
  • 30 篇 department of ar...
  • 24 篇 department of co...
  • 23 篇 artificial intel...
  • 21 篇 department of ar...
  • 19 篇 east west instit...
  • 19 篇 department of co...
  • 19 篇 school of artifi...
  • 18 篇 machine learning...
  • 17 篇 department of ar...
  • 17 篇 lovely professio...
  • 17 篇 division of arti...
  • 17 篇 school of comput...
  • 16 篇 machine learning...
  • 16 篇 college of compu...
  • 15 篇 department of ph...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 14 篇 department of el...
  • 13 篇 school of comput...

作者

  • 35 篇 mohsen guizani
  • 33 篇 piyush kumar par...
  • 32 篇 pareek piyush ku...
  • 23 篇 prateek verma
  • 21 篇 stamou giorgos
  • 21 篇 guizani mohsen
  • 19 篇 zhang kun
  • 15 篇 karray fakhri
  • 14 篇 ghojogh benyamin
  • 14 篇 verma prateek
  • 14 篇 lymperaiou maria
  • 13 篇 ghodsi ali
  • 13 篇 crowley mark
  • 12 篇 vijay k.
  • 11 篇 xiaojiang du
  • 11 篇 cai ruichu
  • 10 篇 filandrianos gio...
  • 10 篇 rushikesh burle
  • 9 篇 liu yang
  • 9 篇 r. santhana kris...

语言

  • 1,529 篇 英文
  • 199 篇 其他
  • 3 篇 中文
检索条件"机构=Artificial Intelligence and Machine Learning School of Computer and Engineering"
1731 条 记 录,以下是1651-1660 订阅
排序:
SoccerNet 2023 Challenges Results
arXiv
收藏 引用
arXiv 2023年
作者: Cioppa, Anthony Giancola, Silvio Somers, Vladimir Magera, Floriane Zhou, Xin Mkhallati, Hassan Deliège, Adrien Held, Jan Hinojosa, Carlos Mansourian, Amir M. Miralles, Pierre Barnich, Olivier De Vleeschouwer, Christophe Alahi, Alexandre Ghanem, Bernard Van Droogenbroeck, Marc Kamal, Abdullah Maglo, Adrien Clapés, Albert Abdelaziz, Amr Xarles, Artur Orcesi, Astrid Scott, Atom Liu, Bin Lim, Byoungkwon Chen, Chen Deuser, Fabian Yan, Feng Yu, Fufu Shitrit, Gal Wang, Guanshuo Choi, Gyusik Kim, Hankyul Guo, Hao Fahrudin, Hasby Koguchi, Hidenari Ardö, Håkan Salah, Ibrahim Yerushalmy, Ido Muhammad, Iftikar Uchida, Ikuma Be'ery, Ishay Rabarisoa, Jaonary Lee, Jeongae Fu, Jiajun Yin, Jianqin Xu, Jinghang Nang, Jongho Denize, Julien Li, Junjie Zhang, Junpei Kim, Juntae Synowiec, Kamil Kobayashi, Kenji Zhang, Kexin Habel, Konrad Nakajima, Kota Jiao, Licheng Ma, Lin Wang, Lizhi Wang, Luping Li, Menglong Zhou, Mengying Nasr, Mohamed Abdelwahed, Mohamed Liashuha, Mykola Falaleev, Nikolay Oswald, Norbert Jia, Qiong Pham, Quoc-Cuong Song, Ran Hérault, Romain Peng, Rui Chen, Ruilong Liu, Ruixuan Baikulov, Ruslan Fukushima, Ryuto Escalera, Sergio Lee, Seungcheon Chen, Shimin Ding, Shouhong Someya, Taiga Moeslund, Thomas B. Li, Tianjiao Shen, Wei Zhang, Wei Li, Wei Dai, Wei Luo, Weixin Zhao, Wending Zhang, Wenjie Yang, Xinquan Ma, Yanbiao Joo, Yeeun Zeng, Yingsen Gan, Yiyang Zhu, Yongqiang Zhong, Yujie Ruan, Zheng Li, Zhiheng Huang, Zhijian Meng, Ziyu Belgium Saudi Arabia Sportradar Norway UCLouvain Belgium EPFL Switzerland EVS Broadcast Equipment Belgium Baidu Research United States Belgium Sharif University of Technology Iran Footovision France Zewail City of Science Technology and Innovation Egypt Université Paris-Saclay CEA France Universitat de Barcelona Spain Computer Vision Center Spain Nagoya University Japan Research Center for Applied Mathematics and Machine Intelligence Zhejiang Lab China AIBrain United States OPPO Research Institute China Germany Meituan China Tencent Youtu Lab China Amazon Prime Video Sport United States Sogang University Korea Republic of The University of Tokyo Japan Spiideo Sweden University of Tsukuba Japan School of Artificial Intelligence Beijing University of Posts and Telecommunications China Normandie Univ INSA Rouen LITIS France Shanghai Jiao Tong University China Key Laboratory of Intelligent Perception and Image Understanding The Ministry of Education Xidian University China NASK - National Research Institute Poland Robo Space China Tongji University China Sportlight Technology United Kingdom School of Control Science and Engineering Shandong University China lRomul Russia Aalborg University Denmark Turing AI Cultures GmbH Germany Information Systems Technology and Design Singapore University of Technology and Design Singapore Sun Yat-sen University China
The SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three mai... 详细信息
来源: 评论
Combining machine learning and computational chemistry for predictive insights into chemical systems
arXiv
收藏 引用
arXiv 2021年
作者: Keith, John A. Vassilev-Galindo, Valentin Cheng, Bingqing Chmiela, Stefan Gastegger, Michael Müller, Klaus-Robert Tkatchenko, Alexandre Department of Chemical and Petroleum Engineering Swanson School of Engineering University of Pittsburgh Pittsburgh United States Department of Physics and Materials Science University of Luxembourg Luxembourg CityL-1511 Luxembourg Accelerate Programme for Scientific Discovery Department of Computer Science and Technology 15 J. J. Thomson Avenue CambridgeCB3 0FD United Kingdom Cavendish Laboratory University of Cambridge J. J. Thomson Avenue CambridgeCB3 0HE United Kingdom Department of Software Engineering and Theoretical Computer Science Technische Universität Berlin Berlin10587 Germany Machine Learning Group Technische Universität Berlin Berlin10587 Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of Max-Planck-Institut für Informatik Saarbrücken Germany Google Research Brain team Berlin Germany
machine learning models are poised to make a transformative impact on chemical sciences by dramatically accelerating computational algorithms and amplifying insights available from computational chemistry methods. How... 详细信息
来源: 评论
Runway Detection and Localization in Aerial Images using Deep learning
Runway Detection and Localization in Aerial Images using Dee...
收藏 引用
Proceedings of the Digital Image Computing: Technqiues and Applications (DICTA)
作者: Javeria Akbar Muhammad Shahzad Muhammad Imran Malik Adnan Ul-Hasan Fasial Shafait School of Electrical Engineering and Computer Science National University of Sciences and Technology (NUST) Islamabad Pakistan Deep Learning Lab (DLL) National Center of Artificial Intelligence (NCAI) Islamabad Pakistan
Landing is the most difficult phase of the flight for any airborne platform. Due to lack of efficient systems, there have been numerous landing accidents resulting in the damage of onboard hardware. Vision based syste... 详细信息
来源: 评论
Rethinking Table Recognition using Graph Neural Networks
Rethinking Table Recognition using Graph Neural Networks
收藏 引用
International Conference on Document Analysis and Recognition
作者: Shah Rukh Qasim Hassan Mahmood Faisal Shafait School of Electrical Engineering and Computer Science (SEECS) National University of Sciences and Technology (NUST) Islamabad Pakistan Deep Learning Laboratory National Center of Artificial Intelligence (NCAI) Islamabad Pakistan
Document structure analysis, such as zone segmentation and table recognition, is a complex problem in document processing and is an active area of research. The recent success of deep learning in solving various compu... 详细信息
来源: 评论
Variational pretraining for semi-supervised text classification
arXiv
收藏 引用
arXiv 2019年
作者: Gururangan, Suchin Dang, Tam Card, Dallas Smith, Noah A. Allen Institute for Artificial Intelligence SeattleWA United States Paul G. Allen School of Computer Science & Engineering University of Washington SeattleWA United States Machine Learning Department Carnegie Mellon University PittsburghPA United States
We introduce VAMPIRE,1a lightweight pretraining framework for effective text classification when data and computing resources are limited. We pretrain a unigram document model as a variational autoencoder on in-domain... 详细信息
来源: 评论
Table Structure Extraction with Bi-Directional Gated Recurrent Unit Networks
Table Structure Extraction with Bi-Directional Gated Recurre...
收藏 引用
International Conference on Document Analysis and Recognition
作者: Saqib Ali Khan Syed Muhammad Daniyal Khalid Muhammad Ali Shahzad Faisal Shafait School of Electrical Engineering and Computer Science (SEECS) National University of Sciences and Technology (NUST) Islamabad Pakistan Deep Learning Laboratory National Center of Artificial Intelligence (NCAI) Islamabad Pakistan
Tables present summarized and structured information to the reader, which makes table's structure extraction an important part of document understanding applications. However, table structure identification is a h... 详细信息
来源: 评论
Optimizing biodiesel production from underutilized Garcinia indica oil through empirical, Coati Optimization and Salp Swarm Algorithm
收藏 引用
Biomass and Bioenergy 2025年 200卷
作者: B.S. Ajith S.B. Prakash G.C. Manjunath Patel Likewin Thomas Mudassir Hasan Krishna Kumar Yadav Olusegun D. Samuel Department of Mechanical Engineering Sahyadri College of Engineering & Management Visvesvaraya Technological University Mangaluru 575007 Karnataka India Department of Mechanical Engineering Visvesvaraya Technological University Post Graduate Centre Mysuru 570019 Karnataka India Department of Mechanical Engineering PES Institute of Technology and Management Visvesvaraya Technological University Shivamogga 577204 Karnataka India Department of Artificial Intelligence and Machine Learning PES Institute of Technology and Management Visvesvaraya Technological University Shivamogga 577204 Karnataka India Department of Chemical Engineering College of Engineering King Khalid University Abha Saudi Arabia Department of VLSI Microelectronics Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University Chennai 602105 Tamil Nadu India Environmental and Atmospheric Sciences Research Group Scientific Research Center Al-Ayen University Thi-Qar Nasiriyah 64001 Iraq Department of Mechanical Engineering Federal University of Petroleum Resources P.M.B 1221 Effurun Delta State Nigeria
The novel Garcinia Indica feedstock grown on non-arable land with 37 % oil content ensures sustainable biofuel production resources. A two-stage transesterification process (catalyst: H 2 SO 4 followed by NaOH) i...
来源: 评论
Optimal Client Sampling for Federated learning
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Wenlin Horváth, Samuel Richtárik, Peter Department of Engineering University of Cambridge CambridgeCB2 1PZ United Kingdom Department of Empirical Inference Max Planck Institute for Intelligent Systems Tübingen72076 Germany Department of Machine Learning Mohamed bin Zayed University of Artificial Intelligence Masdar City Abu Dhabi United Arab Emirates Computer Electrical and Mathematical Science and Engineering Division King Abdullah University of Science and Technology Thuwal23955-6900 Saudi Arabia
It is well understood that client-master communication can be a primary bottleneck in federated learning (FL). In this work, we address this issue with a novel client subsampling scheme, where we restrict the number o... 详细信息
来源: 评论
A practical guide to machine learning interatomic potentials – Status and future
arXiv
收藏 引用
arXiv 2025年
作者: Jacobs, Ryan Morgan, Dane Attarian, Siamak Meng, Jun Shen, Chen Wu, Zhenghao Xie, Clare Yijia Yang, Julia H. Artrith, Nongnuch Blaiszik, Ben Ceder, Gerbrand Choudhary, Kamal Csanyi, Gabor Cubuk, Ekin Dogus Deng, Bowen Drautz, Ralf Fu, Xiang Godwin, Jonathan Honavar, Vasant Isayev, Olexandr Johansson, Anders Kozinsky, Boris Martiniani, Stefano Ong, Shyue Ping Poltavsky, Igor Schmidt, K.J. Takamoto, So Thompson, Aidan Westermayr, Julia Wood, Brandon M. Department of Materials Science and Engineering University of Wisconsin-Madison MadisonWI55705 United States Harvard University Center for the Environment Harvard University CambridgeMA02138 United States John A. Paulson School of Engineering and Applied Sciences Harvard University CambridgeMA02138 United States Materials Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Utrecht3584 CG Netherlands Globus University of Chicago ChicagoIL United States Data Science and Learning Division Argonne National Laboratory LemontIL United States Department of Materials Science and Engineering University of California BerkeleyCA94720 United States Materials Sciences Division Lawrence Berkeley National Laboratory CA94720 United States Material Measurement Laboratory National Institute of Standards and Technology GaithersburgMD20899 United States Department of Engineering University of Cambridge CambridgeCB2 1PZ United Kingdom Google DeepMind Mountain ViewCA United States Ruhr-Universität Bochum Bochum44780 Germany Meta United States Orbital Materials London United Kingdom Department of Computer Science and Engineering The Pennsylvania State University University ParkPA United States College of Information Sciences and Technology The Pennsylvania State University University ParkPA United States Artificial Intelligence Research Laboratory The Pennsylvania State University University ParkPA United States Center for Artificial Intelligence Foundations and Scientific Applications The Pennsylvania State University University ParkPA United States Department of Chemistry Mellon College of Science Carnegie Mellon University PittsburghPA15213 United States Computational Biology Department School of Computer Science Carnegie Mellon University PittsburghPA15213 United States Courant Institute of Mathematical Sciences New York University New YorkNY10003 United States Center for Soft Matter Research Department of P
The rapid development and large body of literature on machine learning interatomic potentials (MLIPs) can make it difficult to know how to proceed for researchers who are not experts but wish to use these tools. The s... 详细信息
来源: 评论
Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Yingying Jun, A. Liu, Zhiwei Sun, Rui Qian, Liujia Payne, Samuel H. Bittremieux, Wout Ralser, Markus Li, Chen Chen, Yi Dong, Zhen Perez-Riverol, Yasset Khan, Asif Sander, Chris Aebersold, Ruedi Vizcaíno, Juan Antonio Krieger, Jonathan R. Yao, Jianhua Wen, Han Zhang, Linfeng Zhu, Yunping Xuan, Yue Sun, Benjamin Boyang Qiao, Liang Hermjakob, Henning Tang, Haixu Gao, Huanhuan Deng, Yamin Zhong, Qing Chang, Cheng Bandeira, Nuno Li, Ming Weinan, E. Sun, Siqi Yang, Yuedong Omenn, Gilbert S. Zhang, Yue Xu, Ping Fu, Yan Liu, Xiaowen Overall, Christopher M. Wang, Yu Deutsch, Eric W. Chen, Luonan Cox, Jürgen Demichev, Vadim He, Fuchu Huang, Jiaxing Jin, Huilin Liu, Chao Li, Nan Luan, Zhongzhi Song, Jiangning Yu, Kaicheng Wan, Wanggen Wang, Tai Zhang, Kang Zhang, Le Bell, Peter A. Mann, Matthias Zhang, Bing Guo, Tiannan Affiliated Hangzhou First People’s Hospital State Key Laboratory of Medical Proteomics School of Medicine Westlake University Zhejiang Province Hangzhou China Westlake Center for Intelligent Proteomics Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Province Hangzhou China Biology Department Brigham Young University ProvoUT84602 United States Department of Computer Science University of Antwerp Antwerp2020 Belgium Department of Biochemistry CharitéUniversitätsmedizin Berlin Berlin Germany Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology Monash University MelbourneVICVIC 3800 Australia Wellcome Genome Campus Hinxton CambridgeCB10 1SD United Kingdom Harvard Medical School Ludwig Center at Harvard United States Harvard Medical School Broad Institute Ludwig Center at Harvard Dana-Farber Cancer Institute United States Department of Biology Institute of Molecular Systems Biology ETH Zürich Zürich Switzerland Bruker Ltd. MiltonONL9T 6P4 Canada AI for Life Sciences Lab Tencent Shenzhen518057 China State Key Laboratory of Medical Proteomics AI for Science Institute Beijing100080 China Beijing Institute of Lifeomics Beijing102206 China Thermo Fisher Scientific GmbH Hanna-Kunath Str. 11 Bremen28199 Germany Informatics and Predictive Sciences Research Bristol Myers Squibb United States Department of Chemistry Fudan University Songhu Road 2005 Shanghai200438 China Department of Computer Science Luddy School of Informatics Computing and Engineering Indiana University IN47408 United States ProCan® Children’s Medical Research Institute Faculty of Medicine and Health The University of Sydney WestmeadNSW Australia La Jolla CA United States Central China Institute of Artificial Intelligence University of Waterloo Canada AI for Science Institute Center for Machine Learning Research School of Mathematical Sciences Peking University China Research Institute of Intelligent Complex Systems Fudan U
artificial intelligence (AI) is transforming scientific research, including proteomics. Advances in mass spectrometry (MS)-based proteomics data quality, diversity, and scale, combined with groundbreaking AI technique... 详细信息
来源: 评论