咨询与建议

限定检索结果

文献类型

  • 127 篇 期刊文献
  • 102 篇 会议

馆藏范围

  • 229 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 179 篇 工学
    • 125 篇 计算机科学与技术...
    • 106 篇 软件工程
    • 40 篇 信息与通信工程
    • 39 篇 光学工程
    • 38 篇 生物工程
    • 33 篇 生物医学工程(可授...
    • 18 篇 控制科学与工程
    • 16 篇 电子科学与技术(可...
    • 15 篇 化学工程与技术
    • 11 篇 电气工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 5 篇 建筑学
    • 5 篇 航空宇航科学与技...
    • 3 篇 材料科学与工程(可...
    • 3 篇 土木工程
  • 116 篇 理学
    • 54 篇 数学
    • 48 篇 物理学
    • 39 篇 生物学
    • 13 篇 化学
    • 13 篇 统计学(可授理学、...
  • 44 篇 管理学
    • 24 篇 图书情报与档案管...
    • 22 篇 管理科学与工程(可...
    • 4 篇 工商管理
    • 3 篇 公共管理
  • 21 篇 医学
    • 17 篇 基础医学(可授医学...
    • 17 篇 临床医学
    • 11 篇 药学(可授医学、理...
    • 5 篇 公共卫生与预防医...
  • 5 篇 法学
    • 4 篇 社会学
  • 4 篇 农学
  • 1 篇 经济学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 7 篇 semantics
  • 6 篇 image segmentati...
  • 6 篇 convolution
  • 6 篇 pixels
  • 5 篇 deep learning
  • 5 篇 generative adver...
  • 4 篇 distillation
  • 4 篇 task analysis
  • 4 篇 motion planning
  • 4 篇 image
  • 4 篇 graph neural net...
  • 4 篇 feature extracti...
  • 4 篇 tumors
  • 4 篇 image reconstruc...
  • 4 篇 object recogniti...
  • 4 篇 training
  • 3 篇 object detection
  • 3 篇 deep neural netw...
  • 3 篇 neural networks
  • 3 篇 cameras

机构

  • 27 篇 school of artifi...
  • 21 篇 siat branch shen...
  • 15 篇 national laborat...
  • 13 篇 shenzhen key lab...
  • 12 篇 shenzhen key lab...
  • 11 篇 university of ch...
  • 11 篇 shanghai artific...
  • 11 篇 department artif...
  • 10 篇 technische hochs...
  • 9 篇 pattern recognit...
  • 9 篇 department artif...
  • 8 篇 pattern recognit...
  • 7 篇 sensetime resear...
  • 7 篇 pattern recognit...
  • 7 篇 institute of vet...
  • 7 篇 pattern recognit...
  • 7 篇 beijing academy ...
  • 7 篇 department of co...
  • 6 篇 tsinghua univers...
  • 6 篇 state key lab on...

作者

  • 29 篇 breininger katha...
  • 25 篇 maier andreas
  • 22 篇 qiao yu
  • 12 篇 lin yankai
  • 11 篇 zhou jie
  • 11 篇 li peng
  • 11 篇 wang yali
  • 10 篇 dong chao
  • 9 篇 wilm frauke
  • 8 篇 sun maosong
  • 8 篇 ding mingyue
  • 8 篇 liu zhiyuan
  • 8 篇 schlereth maja
  • 8 篇 aubreville marc
  • 7 篇 cai chao
  • 6 篇 qiu jingna
  • 6 篇 klopfleisch robe...
  • 6 篇 yu qiao
  • 6 篇 ma zhanyu
  • 5 篇 yang seung hee

语言

  • 222 篇 英文
  • 5 篇 其他
  • 2 篇 中文
检索条件"机构=Artificial Intelligence and Pattern Recognition Lab"
229 条 记 录,以下是91-100 订阅
排序:
CAD-RADS Scoring using Deep Learning and Task-Specific Centerline labeling
arXiv
收藏 引用
arXiv 2022年
作者: Denzinger, Felix Wels, Michael Taubmann, Oliver Gülsün, Mehmet A. Schöbinger, Max André, Florian Buss, Sebastian J. Görich, Johannes Sühling, Michael Maier, Andreas Breininger, Katharina Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Siemens Healthcare GmbH Computed Tomography Forchheim Germany Das Radiologische Zentrum Radiology Center Sinsheim-Eberbach-Erbach-Walldorf-Heidelberg Germany Department Artificial Intelligence in Biomedical Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany
With coronary artery disease (CAD) persisting to be one of the leading causes of death worldwide, interest in supporting physicians with algorithms to speed up and improve diagnosis is high. In clinical practice, the ... 详细信息
来源: 评论
Survey on Deep Face Restoration: From Non-blind to Blind and Beyond
arXiv
收藏 引用
arXiv 2023年
作者: Li, Wenjie Wang, Mei Zhang, Kai Li, Juncheng Li, Xiaoming Zhang, Yuhang Gao, Guangwei Deng, Weihong Lin, Chia-Wen The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China The Computer Vision Lab ETH Zürich Zürich Switzerland The School of Communication and Information Engineering Shanghai University Shanghai China The Nanyang Technological University Singapore The Intelligent Visual Information Perception Laboratory Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing China The Department of Electrical Engineering National Tsing Hua University Hsinchu Taiwan
Face restoration (FR) is a specialized field within image restoration that aims to recover low-quality (LQ) face images into high-quality (HQ) face images. Recent advances in deep learning technology have led to signi... 详细信息
来源: 评论
Gray matter volume predicts individual body mass index and its development during adolescence  2021
Gray matter volume predicts individual body mass index and i...
收藏 引用
13th International Conference on Bioinformatics and Biomedical Technology, ICBBT 2021
作者: Wang, Haiyan Jiang, Tianzi Brainnetome Center and National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing100049 China CAS Center for Excellence in Brain Science and Intelligence Technology Institute of Automation Chinese Academy of Sciences Beijing100190 China Clinical Hospital of Chengdu Brain Science Institute MOE Key Lab for Neuroinformation University of Electronic Science and Technology of China Chengdu625014 China Queensland Brain Institute University of Queensland BrisbaneQLD4072 Australia
Adolescent obesity is one of the most important current public health concerns, owing to its increased prevalence and adverse effects on physical and mental health. Body mass index (BMI) is a measure of obesity, and r... 详细信息
来源: 评论
Lymphocyte Annotator: CD3+ and CD8+ IHC Stained Patch Image Annotation Tool
Lymphocyte Annotator: CD3+ and CD8+ IHC Stained Patch Image ...
收藏 引用
Recent Advances in Electrical Engineering & Computer Sciences (RAEE & CS), International Symposium on
作者: Muhammad Mohsin Zafar Zunaira Rauf Anabia Sohail Asifullah Khan Pattern Recognition Lab DCIS Pakistan Institute of Engineering and Applied Sciences Islamabad Pakistan PIEAS Artificial Intelligence Center (PAIC) Pattern Recognition Lab DCIS Pakistan Institute of Engineering and Applied Sciences Islamabad Pakistan
In digital pathology, preliminary step for the development of Computer Aided Diagnostics involves defining and labelling an Object of Interest. Contrary to traditional tiresome method of observation and marking of obj... 详细信息
来源: 评论
PC-HMR: Pose calibration for 3d human mesh recovery from 2D images/videos
arXiv
收藏 引用
arXiv 2021年
作者: Luan, Tianyu Wang, Yali Zhang, Junhao Wang, Zhe Zhou, Zhipeng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China University of California Irvine United States
The end-to-end Human Mesh Recovery (HMR) approach (Kanazawa et al. 2018) has been successfully used for 3D body reconstruction. However, most HMR-based frameworks reconstruct human body by directly learning mesh param... 详细信息
来源: 评论
AutoCaption: Image captioning with neural architecture search
arXiv
收藏 引用
arXiv 2020年
作者: Zhu, Xinxin Wang, Weining Guo, Longteng Liu, Jing National Lab of Pattern Recognition Institute of Automation Chinese Academy of Sciences School of Artificial Intelligence University of Chinese Academy of Sciences China
Image captioning transforms complex visual information into abstract natural language for representation, which can help computers understanding the world quickly. However, due to the complexity of the real environmen... 详细信息
来源: 评论
Two-dimensional multi-fiber spectrum image correction based on machine learning techniques
arXiv
收藏 引用
arXiv 2020年
作者: Xu, Jiali Yin, Qian Guo, Ping Zheng, Xin Image Processing and Pattern Recognition Lab. School of Artificial Intelligence Beijing Normal University Beijing100875 China Image Processing and Pattern Recognition Lab School of Systems Science Beijing Normal University Beijing100875 China
Due to limited size and imperfect of the optical components in a spectrometer, aberration has inevitably been brought into two-dimensional multi-fiber spectrum image in LAMOST, which leads to obvious spacial variation... 详细信息
来源: 评论
Investigate indistinguishable points in semantic segmentation of 3D point cloud
arXiv
收藏 引用
arXiv 2021年
作者: Xu, Mingye Zhou, Zhipeng Zhang, Junhao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences China Shanghai AI Lab Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
This paper investigates the indistinguishable points (difficult to predict label) in semantic segmentation for large-scale 3D point clouds. The indistinguishable points consist of those located in complex boundary, po... 详细信息
来源: 评论
TR-BERT: Dynamic token reduction for accelerating BERT inference
arXiv
收藏 引用
arXiv 2021年
作者: Ye, Deming Lin, Yankai Huang, Yufei Sun, Maosong Department of Computer Science and Technology Tsinghua University Beijing China Institute for Artificial Intelligence Tsinghua University Beijing China Beijing National Research Center for Information Science and Technology China State Key Lab on Intelligent Technology and Systems Tsinghua University Beijing China Beijing Academy of Artificial Intelligence China Pattern Recognition Center WeChat AI Tencent Inc
Existing pre-trained language models (PLMs) are often computationally expensive in inference, making them impractical in various resource-limited real-world applications. To address this issue, we propose a dynamic to... 详细信息
来源: 评论
CB-HVTNet: A channel-boosted hybrid vision transformer network for lymphocyte assessment in histopathological images
arXiv
收藏 引用
arXiv 2023年
作者: Ali, Momina Liaqat Rauf, Zunaira Khan, Asifullah Sohail, Anabia Ullah, Rafi Gwak, Jeonghwan Pattern Recognition Lab Department of Computer & Information Sciences Pakistan Institute of Engineering & Applied Sciences Nilore Islamabad45650 Pakistan Pakistan Institute of Engineering & Applied Sciences Nilore Islamabad45650 Pakistan Center for Mathematical Sciences Pakistan Institute of Engineering & Applied Sciences Nilore Islamabad45650 Pakistan Department of Computer Science Faculty of Computing and Artificial Intelligence Air University IslamabadE-9 Pakistan Perak31750 Malaysia Department of Software Korea National University of Transportation Chungju27469 Korea Republic of
Transformers, due to their ability to learn long-range dependencies, have overcome the shortcomings of convolutional neural networks (CNNs) for global perspective learning. However, their multi-head attention module o... 详细信息
来源: 评论