咨询与建议

限定检索结果

文献类型

  • 129 篇 期刊文献
  • 102 篇 会议

馆藏范围

  • 231 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 181 篇 工学
    • 125 篇 计算机科学与技术...
    • 106 篇 软件工程
    • 40 篇 信息与通信工程
    • 39 篇 光学工程
    • 38 篇 生物工程
    • 33 篇 生物医学工程(可授...
    • 18 篇 控制科学与工程
    • 16 篇 电子科学与技术(可...
    • 15 篇 化学工程与技术
    • 12 篇 电气工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 航空宇航科学与技...
    • 4 篇 土木工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 测绘科学与技术
  • 116 篇 理学
    • 54 篇 数学
    • 48 篇 物理学
    • 39 篇 生物学
    • 13 篇 化学
    • 13 篇 统计学(可授理学、...
  • 44 篇 管理学
    • 24 篇 图书情报与档案管...
    • 22 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 21 篇 医学
    • 17 篇 基础医学(可授医学...
    • 17 篇 临床医学
    • 11 篇 药学(可授医学、理...
    • 5 篇 公共卫生与预防医...
  • 5 篇 法学
    • 4 篇 社会学
  • 4 篇 农学
  • 1 篇 经济学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 7 篇 semantics
  • 6 篇 image segmentati...
  • 6 篇 convolution
  • 6 篇 pixels
  • 5 篇 deep learning
  • 5 篇 generative adver...
  • 4 篇 distillation
  • 4 篇 task analysis
  • 4 篇 motion planning
  • 4 篇 image
  • 4 篇 graph neural net...
  • 4 篇 feature extracti...
  • 4 篇 tumors
  • 4 篇 image reconstruc...
  • 4 篇 object recogniti...
  • 4 篇 training
  • 3 篇 object detection
  • 3 篇 deep neural netw...
  • 3 篇 neural networks
  • 3 篇 cameras

机构

  • 28 篇 school of artifi...
  • 21 篇 siat branch shen...
  • 15 篇 national laborat...
  • 13 篇 shenzhen key lab...
  • 13 篇 shenzhen key lab...
  • 12 篇 shanghai artific...
  • 11 篇 university of ch...
  • 11 篇 department artif...
  • 10 篇 technische hochs...
  • 9 篇 pattern recognit...
  • 9 篇 department artif...
  • 8 篇 pattern recognit...
  • 7 篇 sensetime resear...
  • 7 篇 pattern recognit...
  • 7 篇 institute of vet...
  • 7 篇 pattern recognit...
  • 7 篇 beijing academy ...
  • 7 篇 department of co...
  • 6 篇 tsinghua univers...
  • 6 篇 state key lab on...

作者

  • 29 篇 breininger katha...
  • 25 篇 maier andreas
  • 22 篇 qiao yu
  • 12 篇 wang yali
  • 12 篇 lin yankai
  • 11 篇 zhou jie
  • 11 篇 li peng
  • 10 篇 dong chao
  • 9 篇 wilm frauke
  • 8 篇 sun maosong
  • 8 篇 ding mingyue
  • 8 篇 liu zhiyuan
  • 8 篇 schlereth maja
  • 8 篇 aubreville marc
  • 7 篇 cai chao
  • 6 篇 qiu jingna
  • 6 篇 klopfleisch robe...
  • 6 篇 yu qiao
  • 6 篇 ma zhanyu
  • 5 篇 yang seung hee

语言

  • 223 篇 英文
  • 6 篇 其他
  • 2 篇 中文
检索条件"机构=Artificial Intelligence and Pattern Recognition Lab"
231 条 记 录,以下是101-110 订阅
排序:
CB-HVTNet: A channel-boosted hybrid vision transformer network for lymphocyte assessment in histopathological images
arXiv
收藏 引用
arXiv 2023年
作者: Ali, Momina Liaqat Rauf, Zunaira Khan, Asifullah Sohail, Anabia Ullah, Rafi Gwak, Jeonghwan Pattern Recognition Lab Department of Computer & Information Sciences Pakistan Institute of Engineering & Applied Sciences Nilore Islamabad45650 Pakistan Pakistan Institute of Engineering & Applied Sciences Nilore Islamabad45650 Pakistan Center for Mathematical Sciences Pakistan Institute of Engineering & Applied Sciences Nilore Islamabad45650 Pakistan Department of Computer Science Faculty of Computing and Artificial Intelligence Air University IslamabadE-9 Pakistan Perak31750 Malaysia Department of Software Korea National University of Transportation Chungju27469 Korea Republic of
Transformers, due to their ability to learn long-range dependencies, have overcome the shortcomings of convolutional neural networks (CNNs) for global perspective learning. However, their multi-head attention module o... 详细信息
来源: 评论
UniVIP: A Unified Framework for Self-Supervised Visual Pre-training
arXiv
收藏 引用
arXiv 2022年
作者: Li, Zhaowen Zhu, Yousong Yang, Fan Li, Wei Zhao, Chaoyang Chen, Yingying Chen, Zhiyang Xie, Jiahao Wu, Liwei Zhao, Rui Tang, Ming Wang, Jinqiao National Laboratory Of Pattern Recognition Institute Of Automation CAS Beijing China School Of Artificial Intelligence University Of Chinese Academy Of Sciences Beijing China SenseTime Research Development Research Institute Of Guangzhou Smart City Guangzhou China S-Lab Nanyang Technological University Singapore Peng Cheng Laboratory Shenzhen China Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai China
Self-supervised learning (SSL) holds promise in leveraging large amounts of unlabeled data. However, the success of popular SSL methods has limited on single-centricobject images like those in ImageNet and ignores the... 详细信息
来源: 评论
Convergent Neuroimaging and Molecular Signatures in Mild Cognitive Impairment and Alzheimer’s Disease:A Data-Driven Meta-Analysis with N=3,118
收藏 引用
Neuroscience Bulletin 2024年 第9期40卷 1274-1286页
作者: Xiaopeng Kang Dawei Wang Jiaji Lin Hongxiang Yao Kun Zhao Chengyuan Song Pindong Chen Yida Qu Hongwei Yang Zengqiang Zhang Bo Zhou Tong Han Zhengluan Liao Yan Chen Jie Lu Chunshui Yu Pan Wang Xinqing Zhang Ming Li Xi Zhang Tianzi Jiang Yuying Zhou Bing Liu Ying Han Yong Liu The Alzheimer’s Disease Neuroimaging Initiative The Multi-Center Alzheimer’s Disease Imaging(MCADI)Consortium School of Artificial Intelligence University of Chinese Academy of SciencesBeijing100049China Brainnetome Center and National Laboratory of Pattern Recognition Institute of AutomationChinese Academy of SciencesBeijing100190China Department of Radiology Qilu Hospital of Shandong UniversityJi’nan250063China Department of Neurology the Second Affiliated Hospital of Air Force Medical UniversityXi’an710032China Department of Radiology Chinese PLA General HospitalBeijing100853China Department of Radiology the Second Medical CentreNational Clinical Research Centre for Geriatric DiseasesChinese PLA General HospitalBeijing100853China School of Artificial Intelligence Beijing University of Posts and TelecommunicationsBeijing100191China Department of Neurology Qilu Hospital of Shandong UniversityJi’nan250063China Department of Radiology Xuanwu Hospital of Capital Medical UniversityBeijing100053China Branch of Chinese PLA General HospitalSanya572013China Department of Neurology the Second Medical CentreNational Clinical Research Centre for Geriatric DiseasesChinese PLA General HospitalBeijing100853China Department of Radiology Tianjin Huanhu HospitalTianjin300222China Department of Psychiatry People’s Hospital of Hangzhou Medical CollegeZhejiang Provincial People’s HospitalHangzhou310014China Department of Radiology Tianjin Medical University General HospitalTianjin300070China Department of Neurology Tianjin Huanhu HospitalTianjin300222China Department of Neurology Xuanwu Hospital of Capital Medical UniversityBeijing100053China Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences&Yunnan Province Kunming Institute of ZoologyChinese Academy of SciencesKunming650201YunnanChina State Key Lab of Cognition Neuroscience&Learning Beijing Normal UniversityBeijing100875China National Clinical Research Center for Geriatric Disorders Beijing100053China Center of Alzheimer’s Disease Beijing Institute for Brain DisordersBeijing1000
The current study aimed to evaluate the susceptibility to regional brain atrophy and its biological mechanism in Alzheimer’s disease(AD).We conducted data-driven meta-analyses to combine 3,118 structural magnetic res... 详细信息
来源: 评论
Pan-tumor CAnine cuTaneous Cancer Histology (CATCH) dataset
arXiv
收藏 引用
arXiv 2022年
作者: Wilm, Frauke Fragoso, Marco Marzahl, Christian Qiu, Jingna Puget, Chloé Diehl, Laura Bertram, Christof A. Klopfleisch, Robert Maier, Andreas Breininger, Katharina Aubreville, Marc Pattern Recognition Lab Department of Computer Science Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Institute of Veterinary Pathology Freie Universität Berlin Berlin Germany Department Artificial Intelligence in Biomedical Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Institute of Pathology University of Veterinary Medicine Vienna Austria Technische Hochschule Ingolstadt Ingolstadt Germany
Due to morphological similarities, the differentiation of histologic sections of cutaneous tumors into individual subtypes can be challenging. Recently, deep learning-based approaches have proven their potential for s... 详细信息
来源: 评论
First Steps on Gamification of Lung Fluid Cells Annotations in the Flower Domain
arXiv
收藏 引用
arXiv 2021年
作者: Kunzmann, Sonja Marzahl, Christian Denzinger, Felix Bertram, Christof Klopfleisch, Robert Breininger, Katharina Christlein, Vincent Maier, Andreas Pattern Recognition Lab FAU Erlangen-Nürnberg Erlangen Germany Department Artificial Intelligence in Biomedical Engineering FAU Erlangen-Nürnberg Erlangen Germany Institute of Pathology University of Verterinary Medicine Vienna Austria Institute of Veterinary Pathology Freie Universität Berlin Germany
Annotating data, especially in the medical domain, requires expert knowledge and a lot of effort. This limits the amount and/or usefulness of available medical data sets for experimentation. Therefore, developing stra... 详细信息
来源: 评论
Initial Investigations Towards Non-invasive Monitoring of Chronic Wound Healing Using Deep Learning and Ultrasound Imaging
arXiv
收藏 引用
arXiv 2022年
作者: Schlereth, Maja Stromer, Daniel Mantri, Yash Tsujimoto, Jason Breininger, Katharina Maier, Andreas Anderson, Caesar Garimella, Pranav S. Jokerst, Jesse V. Department Artificial Intelligence in Biomedical Engineering FAU Erlangen-Nürnberg Erlangen Germany Pattern Recognition Lab FAU Erlangen-Nürnberg Erlangen Germany Department of Bioengineering University of California San Diego United States Department of Emergency Medicine San Diego United States Division of Nephrology and Hypertension Department of Medicine San Diego United States Department of Nanoengineering University of California San Diego United States
Chronic wounds including diabetic and arterial/venous insufficiency injuries have become a major burden for healthcare systems worldwide. Demographic changes suggest that wound care will play an even bigger role in th... 详细信息
来源: 评论
Food Photo enhancer of one sample generative adversarial network  1
Food Photo enhancer of one sample generative adversarial net...
收藏 引用
1st ACM International Conference on Multimedia in Asia, MMAsia 2019
作者: Wang, Shudan Sun, Liang Dong, Weiming Zhang, Yong Institute of Artificial Intelligence School of Automation and Electrical Engineering University of Science and Technology Beijing China National Laboratory of Pattern Recognition China Tencent Ai Lab China
Image enhancement is an important branch in the field of image processing. A few existing methods leverage Generative Adversarial Networks (GANs) for this task. However, they have several defects when applied to a spe... 详细信息
来源: 评论
Deep Neural Networks based Meta-Learning for Network Intrusion Detection
arXiv
收藏 引用
arXiv 2023年
作者: Sohail, Anabia Ayisha, Bibi Hammed, Irfan Zafar, Muhammad Mohsin Alquhayz, Hani Khan, Asifullah Pattern Recognition Lab Department of Computer & Information Sciences Pakistan Institute of Engineering & Applied Sciences Nilore Islamabad45650 Pakistan Department of Computer Science Faculty of Computing and Artificial Intelligence Air University E-9 Islamabad Pakistan Faculty of Computer Science and Engineering Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi District Swabi Khyber Pakhtunkhwa23640 Pakistan Department of Computer Science and Information College of Science in Zulfi Majmaah University Al-Majmaah11952 Saudi Arabia Pakistan Institute of Engineering & Applied Sciences Nilore Islamabad45650 Pakistan
The digitization of different components of industry and inter-connectivity among indigenous networks have increased the risk of network attacks. Designing an intrusion detection system to ensure security of the indus... 详细信息
来源: 评论
PIPAL: A Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration  16th
PIPAL: A Large-Scale Image Quality Assessment Dataset for Pe...
收藏 引用
16th European Conference on Computer Vision, ECCV 2020
作者: Jinjin, Gu Haoming, Cai Haoyu, Chen Xiaoxing, Ye Ren, Jimmy S. Chao, Dong The School of Data Science The Chinese University of Hong Kong Shenzhen China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China SenseTime Research Science Park Hong Kong SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent IR methods based on Generative Adversarial Networks (GANs) have achieved significant impr... 详细信息
来源: 评论
On the Safety of Conversational Models: Taxonomy, Dataset, and Benchmark
arXiv
收藏 引用
arXiv 2021年
作者: Sun, Hao Xu, Guangxuan Deng, Jiawen Cheng, Jiale Zheng, Chujie Zhou, Hao Peng, Nanyun Zhu, Xiaoyan Huang, Minlie The CoAI Group DCST Institute for Artificial Intelligence State Key Lab of Intelligent Technology and Systems Beijing National Research Center for Information Science and Technology Tsinghua University Beijing100084 China University of California Los Angeles United States Pattern Recognition Center WeChat AI Tencent Inc China
Dialogue safety problems severely limit the real-world deployment of neural conversational models and have attracted great research interests recently. However, dialogue safety problems remain under-defined and the co... 详细信息
来源: 评论