咨询与建议

限定检索结果

文献类型

  • 129 篇 期刊文献
  • 102 篇 会议

馆藏范围

  • 231 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 181 篇 工学
    • 125 篇 计算机科学与技术...
    • 106 篇 软件工程
    • 40 篇 信息与通信工程
    • 39 篇 光学工程
    • 38 篇 生物工程
    • 33 篇 生物医学工程(可授...
    • 18 篇 控制科学与工程
    • 16 篇 电子科学与技术(可...
    • 15 篇 化学工程与技术
    • 12 篇 电气工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 航空宇航科学与技...
    • 4 篇 土木工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 测绘科学与技术
  • 116 篇 理学
    • 54 篇 数学
    • 48 篇 物理学
    • 39 篇 生物学
    • 13 篇 化学
    • 13 篇 统计学(可授理学、...
  • 44 篇 管理学
    • 24 篇 图书情报与档案管...
    • 22 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 21 篇 医学
    • 17 篇 基础医学(可授医学...
    • 17 篇 临床医学
    • 11 篇 药学(可授医学、理...
    • 5 篇 公共卫生与预防医...
  • 5 篇 法学
    • 4 篇 社会学
  • 4 篇 农学
  • 1 篇 经济学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 7 篇 semantics
  • 6 篇 image segmentati...
  • 6 篇 convolution
  • 6 篇 pixels
  • 5 篇 deep learning
  • 5 篇 generative adver...
  • 4 篇 distillation
  • 4 篇 task analysis
  • 4 篇 motion planning
  • 4 篇 image
  • 4 篇 graph neural net...
  • 4 篇 feature extracti...
  • 4 篇 tumors
  • 4 篇 image reconstruc...
  • 4 篇 object recogniti...
  • 4 篇 training
  • 3 篇 object detection
  • 3 篇 deep neural netw...
  • 3 篇 neural networks
  • 3 篇 cameras

机构

  • 28 篇 school of artifi...
  • 21 篇 siat branch shen...
  • 15 篇 national laborat...
  • 13 篇 shenzhen key lab...
  • 13 篇 shenzhen key lab...
  • 12 篇 shanghai artific...
  • 11 篇 university of ch...
  • 11 篇 department artif...
  • 10 篇 technische hochs...
  • 9 篇 pattern recognit...
  • 9 篇 department artif...
  • 8 篇 pattern recognit...
  • 7 篇 sensetime resear...
  • 7 篇 pattern recognit...
  • 7 篇 institute of vet...
  • 7 篇 pattern recognit...
  • 7 篇 beijing academy ...
  • 7 篇 department of co...
  • 6 篇 tsinghua univers...
  • 6 篇 state key lab on...

作者

  • 29 篇 breininger katha...
  • 25 篇 maier andreas
  • 22 篇 qiao yu
  • 12 篇 wang yali
  • 12 篇 lin yankai
  • 11 篇 zhou jie
  • 11 篇 li peng
  • 10 篇 dong chao
  • 9 篇 wilm frauke
  • 8 篇 sun maosong
  • 8 篇 ding mingyue
  • 8 篇 liu zhiyuan
  • 8 篇 schlereth maja
  • 8 篇 aubreville marc
  • 7 篇 cai chao
  • 6 篇 qiu jingna
  • 6 篇 klopfleisch robe...
  • 6 篇 yu qiao
  • 6 篇 ma zhanyu
  • 5 篇 yang seung hee

语言

  • 223 篇 英文
  • 6 篇 其他
  • 2 篇 中文
检索条件"机构=Artificial Intelligence and Pattern Recognition Lab"
231 条 记 录,以下是121-130 订阅
排序:
Self-slimmed Vision Transformer
arXiv
收藏 引用
arXiv 2021年
作者: Zong, Zhuofan Li, Kunchang Song, Guanglu Wang, Yali Qiao, Yu Leng, Biao Liu, Yu School of Computer Science and Engineering Beihang University China SenseTime Research China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China Shanghai AI Laboratory China
Vision transformers (ViTs) have become the popular structures and outperformed convolutional neural networks (CNNs) on various vision tasks. However, such powerful transformers bring a huge computation burden, because... 详细信息
来源: 评论
More data, more relations, more context and more openness: A review and outlook for relation extraction
arXiv
收藏 引用
arXiv 2020年
作者: Han, Xu Gao, Tianyu Lin, Yankai Peng, Hao Yang, Yaoliang Xiao, Chaojun Liu, Zhiyuan Li, Peng Sun, Maosong Zhou, Jie State Key Lab on Intelligent Technology and Systems Institute for Artificial Intelligence Department of Computer Science and Technology Tsinghua University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
Relational facts are an important component of human knowledge, which are hidden in vast amounts of text. In order to extract these facts from text, people have been working on relation extraction (RE) for years. From... 详细信息
来源: 评论
Multi-feature super-resolution network for cloth wrinkle synthesis
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Lan Ye, Juntao Zhang, Xiaopeng National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China Zhejiang Lab Zhejiang Province Hangzhou China
Existing physical cloth simulators suffer from expensive computation and difficulties in tuning mechanical parameters to get desired wrinkling behaviors. Data-driven methods provide an alternative solution. They typic... 详细信息
来源: 评论
Collaborative Multi-View Convolutions With Gating For Accurate And Fast Volumetric Medical Image Segmentation
Collaborative Multi-View Convolutions With Gating For Accura...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Cheng Li Jin Ye Junjun He Shanshan Wang Lixu Gu Yu Qiao Paul C. Lauterbur Research Center for Biomedical Imaging SIAT CAS Shenzhen China Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab SIAT CAS Shenzhen China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China School of Biomedical Engineering/the Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China
Due to their high capacity in capturing 3D spatial information, 3D Fully Convolutional Neural Networks (3D FCNs), especially 3D U-Net, are prevalent for volumetric medical image segmentation. However, 3D convolutions ... 详细信息
来源: 评论
Symmetry-Enhanced Attention Network for Acute Ischemic Infarct Segmentation with Non–Contrast CT Images
arXiv
收藏 引用
arXiv 2021年
作者: Liang, Kongming Han, Kai Li, Xiuli Cheng, Xiaoqing Li, Yiming Wang, Yizhou Yu, Yizhou Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China Deepwise AI Lab Beijing China Department of Medical Imaging Jinling Hospital Nanjing University School of Medicine Jiangsu Nanjing China Department of Computer Science and Technology Peking University Beijing China The University of Hong Kong Pokfulam Hong Kong
Quantitative estimation of the acute ischemic infarct is crucial to improve neurological outcomes of the patients with stroke symptoms. Since the density of lesions is subtle and can be confounded by normal physiologi... 详细信息
来源: 评论
Fully automatic HER2 tissue segmentation for interpretable HER2 scoring
收藏 引用
Journal of Pathology Informatics 2025年 17卷 100435-100435页
作者: Öttl, Mathias Steenpass, Jana Wilm, Frauke Qiu, Jingna Rübner, Matthias Lang-Schwarz, Corinna Taverna, Cecilia Tava, Francesca Hartmann, Arndt Huebner, Hanna Beckmann, Matthias W. Fasching, Peter A. Maier, Andreas Erber, Ramona Breininger, Katharina Pattern Recognition Lab Department of Computer Science Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Institute of Pathology University Hospital Erlangen Erlangen Germany Department of Gynecology and Obstetrics Universitätsklinikum Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Department Artificial Intelligence in Biomedical Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Center for AI and Data Science (CAIDAS) Universität Würzburg Würzburg Germany Institute of Pathology Klinikum Bayreuth GmbH Bayreuth Germany Surgical Pathology Unit Azienda Sanitaria Locale Presidio Ospedaliero Ospedale San Giacomo Novi Ligure Italy Institute of Pathology University Regensburg Regensburg Germany
Breast cancer is the most common cancer in women, with HER2 (human epidermal growth factor receptor 2) overexpression playing a critical role in regulating cell growth and division. HER2 status, assessed according to ... 详细信息
来源: 评论
Context-transformer: Tackling object confusion for few-shot detection
arXiv
收藏 引用
arXiv 2020年
作者: Yang, Ze Wang, Yali Chen, Xianyu Liu, Jianzhuang Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Huawei Noah’s Ark Lab. SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Few-shot object detection is a challenging but realistic scenario, where only a few annotated training images are available for training detectors. A popular approach to handle this problem is transfer learning, i.e.,... 详细信息
来源: 评论
Attention in Attention: Modeling Context Correlation for Efficient Video Classification
arXiv
收藏 引用
arXiv 2022年
作者: Hao, Yanbin Wang, Shuo Cao, Pei Gao, Xinjian Xu, Tong Wu, Jinmeng He, Xiangnan The CCCD Key Lab of Ministry of Culture and Tourism School of Data Science School of Information Science and Technology University of Science and Technology of China Anhui 230026 China The Wuhan Research Institute of Posts and Telecommunications Hubei Wuhan430205 China The School of Computer Science and Information Engineering School of Artificial Intelligence Hefei University of Technology Anhui 230009 China The School of Data Science School of Computer Science and Technology University of Science and Technology of China Anhui 230026 China The Hubei Key Laboratory of Optical Information and Pattern Recognition Wuhan Institute of Technology Hubei Wuhan430070 China
Attention mechanisms have significantly boosted the performance of video classification neural networks thanks to the utilization of perspective contexts. However, the current research on video attention generally foc... 详细信息
来源: 评论
Automatic and explainable grading of meningiomas from histopathology images
arXiv
收藏 引用
arXiv 2021年
作者: Ganz, Jonathan Kirsch, Tobias Hoffmann, Lucas Bertram, Christof A. Hoffmann, Christoph Maier, Andreas Breininger, Katharina Blümcke, Ingmar Jabari, Samir Aubreville, Marc Technische Hochschule Ingolstadt Ingolstadt Germany Institute of Neuropathology University Hospital Erlangen Erlangen Germany Institute of Pathology University of Veterinary Medicine Vienna Vienna Austria Pattern Recognition Lab Computer Science Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Department Artificial Intelligence in Biomedical Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany
Meningioma is one of the most prevalent brain tumors in adults. To determine its malignancy, it is graded by a pathologist into three grades according to WHO standards. This grade plays a decisive role in treatment, a... 详细信息
来源: 评论
CUGE: A Chinese Language Understanding and Generation Evaluation Benchmark
arXiv
收藏 引用
arXiv 2021年
作者: Yao, Yuan Dong, Qingxiu Guan, Jian Cao, Boxi Zhang, Zhengyan Xiao, Chaojun Wang, Xiaozhi Qi, Fanchao Bao, Junwei Nie, Jinran Zeng, Zheni Gu, Yuxian Zhou, Kun Huang, Xuancheng Li, Wenhao Ren, Shuhuai Lu, Jinliang Xu, Chengqiang Wang, Huadong Zeng, Guoyang Zhou, Zile Zhang, Jiajun Li, Juanzi Huang, Minlie Yan, Rui He, Xiaodong Wan, Xiaojun Zhao, Xin Sun, Xu Liu, Yang Liu, Zhiyuan Han, Xianpei Yang, Erhong Sui, Zhifang Sun, Maosong Department of Computer Science and Technology Tsinghua University China MOE Key Lab of Computational Linguistics School of EECS Peking University China Institute of Software Chinese Academy of Sciences China JD AI Research Beijing China School of Information Science Beijing Language and Culture University China School of Information Renmin University of China China National Laboratory of Pattern Recognition Institute of Automation CAS China Gaoling School of Artificial Intelligence Renmin University of China China Wangxuan Institute of Computer Technology Peking University Beijing Academy of Artificial Intelligence China
Realizing general-purpose language intelligence has been a longstanding goal for natural language processing, where standard evaluation benchmarks play a fundamental and guiding role. We argue that for general-purpose... 详细信息
来源: 评论