咨询与建议

限定检索结果

文献类型

  • 129 篇 期刊文献
  • 102 篇 会议

馆藏范围

  • 231 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 181 篇 工学
    • 125 篇 计算机科学与技术...
    • 106 篇 软件工程
    • 40 篇 信息与通信工程
    • 39 篇 光学工程
    • 38 篇 生物工程
    • 33 篇 生物医学工程(可授...
    • 18 篇 控制科学与工程
    • 16 篇 电子科学与技术(可...
    • 15 篇 化学工程与技术
    • 12 篇 电气工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 航空宇航科学与技...
    • 4 篇 土木工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 测绘科学与技术
  • 116 篇 理学
    • 54 篇 数学
    • 48 篇 物理学
    • 39 篇 生物学
    • 13 篇 化学
    • 13 篇 统计学(可授理学、...
  • 44 篇 管理学
    • 24 篇 图书情报与档案管...
    • 22 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 21 篇 医学
    • 17 篇 基础医学(可授医学...
    • 17 篇 临床医学
    • 11 篇 药学(可授医学、理...
    • 5 篇 公共卫生与预防医...
  • 5 篇 法学
    • 4 篇 社会学
  • 4 篇 农学
  • 1 篇 经济学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 7 篇 semantics
  • 6 篇 image segmentati...
  • 6 篇 convolution
  • 6 篇 pixels
  • 5 篇 deep learning
  • 5 篇 generative adver...
  • 4 篇 distillation
  • 4 篇 task analysis
  • 4 篇 motion planning
  • 4 篇 image
  • 4 篇 graph neural net...
  • 4 篇 feature extracti...
  • 4 篇 tumors
  • 4 篇 image reconstruc...
  • 4 篇 object recogniti...
  • 4 篇 training
  • 3 篇 object detection
  • 3 篇 deep neural netw...
  • 3 篇 neural networks
  • 3 篇 cameras

机构

  • 28 篇 school of artifi...
  • 21 篇 siat branch shen...
  • 15 篇 national laborat...
  • 13 篇 shenzhen key lab...
  • 13 篇 shenzhen key lab...
  • 12 篇 shanghai artific...
  • 11 篇 university of ch...
  • 11 篇 department artif...
  • 10 篇 technische hochs...
  • 9 篇 pattern recognit...
  • 9 篇 department artif...
  • 8 篇 pattern recognit...
  • 7 篇 sensetime resear...
  • 7 篇 pattern recognit...
  • 7 篇 institute of vet...
  • 7 篇 pattern recognit...
  • 7 篇 beijing academy ...
  • 7 篇 department of co...
  • 6 篇 tsinghua univers...
  • 6 篇 state key lab on...

作者

  • 29 篇 breininger katha...
  • 25 篇 maier andreas
  • 22 篇 qiao yu
  • 12 篇 wang yali
  • 12 篇 lin yankai
  • 11 篇 zhou jie
  • 11 篇 li peng
  • 10 篇 dong chao
  • 9 篇 wilm frauke
  • 8 篇 sun maosong
  • 8 篇 ding mingyue
  • 8 篇 liu zhiyuan
  • 8 篇 schlereth maja
  • 8 篇 aubreville marc
  • 7 篇 cai chao
  • 6 篇 qiu jingna
  • 6 篇 klopfleisch robe...
  • 6 篇 yu qiao
  • 6 篇 ma zhanyu
  • 5 篇 yang seung hee

语言

  • 223 篇 英文
  • 6 篇 其他
  • 2 篇 中文
检索条件"机构=Artificial Intelligence and Pattern Recognition Lab"
231 条 记 录,以下是141-150 订阅
排序:
Actor and Action Modular Network for Text-based Video Segmentation
arXiv
收藏 引用
arXiv 2020年
作者: Yang, Jianhua Huang, Yan Niu, Kai Huang, Linjiang Ma, Zhanyu Wang, Liang The Pattern Recognition and Intelligent Systems Lab. School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China The School of Computer Science Northwestern Polytechnical University Xi’an China The Multimedia Laboratory Chinese University of Hong Kong Hong Kong Beijing China Beijing China
Text-based video segmentation aims to segment an actor in video sequences by specifying the actor and its performing action with a textual query. Previous methods fail to explicitly align the video content with the te... 详细信息
来源: 评论
PIPAL: a Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration
arXiv
收藏 引用
arXiv 2020年
作者: Gu, Jinjin Cai, Haoming Chen, Haoyu Ye, Xiaoxing Ren, Jimmy S. Dong, Chao School of Data Science Chinese University of Hong Kong Shenzhen China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SenseTime Research SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent IR methods based on Generative Adversarial Networks (GANs) have achieved significant impr... 详细信息
来源: 评论
TTPP: Temporal transformer with progressive prediction for efficient action anticipation
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Wen Peng, Xiaojiang Su, Yanzhou Qiao, Yu Cheng, Jian School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu Sichuan611731 China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Video action anticipation aims to predict future action categories from observed frames. Current state-of-the-art approaches mainly resort to recurrent neural networks to encode history information into hidden states,... 详细信息
来源: 评论
Simultaneous Neural Spike Encoding and Decoding Based on Cross-modal Dual Deep Generative Model
Simultaneous Neural Spike Encoding and Decoding Based on Cro...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Qiongyi Zhou Changde Du Dan Li Haibao Wang Jian K. Liu Huiguang He Research Center for Brain-inspired Intelligence and National Laboratory of Pattern Recognition Chinese Academy of Sciences Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China Huawei Cloud BU EI Innovation Lab Beijing China Centre for Systems Neuroscience University of Leicester Leicester U.K Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Shanghai China
Neural encoding and decoding of retinal ganglion cells (RGCs) have been attached great importance in the research work of brain-machine interfaces. Much effort has been invested to mimic RGC and get insight into RGC s... 详细信息
来源: 评论
BasicVSR: The search for essential components in video super-resolution and beyond
arXiv
收藏 引用
arXiv 2020年
作者: Chan, Kelvin C.K. Wang, Xintao Yu, Ke Dong, Chao Loy, Chen Change S-Lab Nanyang Technological University Singapore Applied Research Center Tencent PCG CUHK – SenseTime Joint Lab Chinese University of Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Video super-resolution (VSR) approaches tend to have more components than the image counterparts as they need to exploit the additional temporal dimension. Complex designs are not uncommon. In this study, we wish to u... 详细信息
来源: 评论
OLSR+: A new routing method based on fuzzy logic in flying ad-hoc networks (FANETs)
收藏 引用
Vehicular Communications 2022年 36卷
作者: Rahmani, Amir Masoud Ali, Saqib Yousefpoor, Efat Yousefpoor, Mohammad Sadegh Javaheri, Danial Lalbakhsh, Pooia Hassan Ahmed, Omed Hosseinzadeh, Mehdi Lee, Sang-Woong Future Technology Research Center National Yunlin University of Science and Technology Yunlin Taiwan Department of Information Systems College of Economics and Political Science Sultan Qaboos University Al Khoudh Muscat Oman Department of Computer Engineering Dezful Branch Islamic Azad University Dezful Iran Department of Computer Engineering Chosun University Gwangju 61452 South Korea Department of Data Science and Artificial Intelligence Faculty of Information Technology Monash University Clayton 3800 VIC Australia Department of Information Technology University of Human Development Sulaymaniyah Iraq Pattern Recognition and Machine Learning Lab Gachon University 1342 Seongnamdaero Sujeonggu Seongnam 13120 South Korea
Flying ad-hoc networks (FANETs) have many applications in military, industrial and agricultural areas. Due to specific features of FANETs, such as high-speed nodes, low density of nodes in the network, and rapid chang... 详细信息
来源: 评论
A comprehensive study on temporal modeling for online action detection
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Wen Peng, Xiaojiang Qiao, Yu Cheng, Jian School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu Sichuan611731 China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences
—Online action detection (OAD) is a practical yet challenging task, which has attracted increasing attention in recent years. A typical OAD system mainly consists of three modules: a frame-level feature extractor whi... 详细信息
来源: 评论
Pixel-wise dense detector for image inpainting
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Ruisong Quan, Weize Wu, Baoyuan Li, Zhifeng Yan, Dong-Ming National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing100049 China School of Data Science Chinese University of Hong Kong Shenzhen Hong Kong Secure Computing Lab of Big Data Shenzhen Research Institute of Big Data China Tencent AI Lab Shenzhen China
Recent GAN-based image inpainting approaches adopt an average strategy to discriminate the generated image and output a scalar, which inevitably lose the position information of visual artifacts. Moreover, the adversa... 详细信息
来源: 评论
A Self-supervised Multimodal Deep Learning Approach to Differentiate Post-radiotherapy Progression from Pseudoprogression in Glioblastoma
arXiv
收藏 引用
arXiv 2025年
作者: Gomaa, Ahmed Huang, Yixing Stephan, Pluvio Breininger, Katharina Frey, Benjamin Dörfler, Arnd Schnell, Oliver Delev, Daniel Coras, Roland Schmitter, Charlotte Stritzelberger, Jenny Semrau, Sabine Maier, Andreas Bayer, Siming Schönecker, Stephan Heiland, Dieter H. Hau, Peter Gaipl, Udo S. Bert, Christoph Fietkau, Rainer Schmidt, Manuel A. Putz, Florian Department of Radiation Oncology University Hospital Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen91054 Germany Erlangen91054 Germany Erlangen91052 Germany Institute of Neuroradiology University Hospital Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen91054 Germany Universität Würzburg Center for Artificial Intelligence and Data Science Würzburg97074 Germany Translational Neurosurgery Alexander-Friedrich-Universität Erlangen-Nürnberg Erlangen91054 Germany Department of Neurosurgery University Hospital Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen91054 Germany Department of Neurology University Hospital Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen91054 Germany Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Department of Radiation Oncology University Hospital Ludwig Maximilian University of Munich Munich81377 Germany Department of Neurological Surgery Northwestern University Feinberg School of Medicine ChicagoIL60611 United States Department of Neurology University Hospital Regensburg Regensburg Germany Wilhelm Sander-NeuroOncology Unit University Hospital Regensburg Regensburg Germany
Accurate differentiation of pseudoprogression (PsP) from True Progression (TP) following radiotherapy (RT) in glioblastoma patients is crucial for optimal treatment planning. However, this task remains challenging due... 详细信息
来源: 评论
Domain generalization across tumor types, laboratories, and species - insights from the 2022 edition of the Mitosis Domain Generalization Challenge
arXiv
收藏 引用
arXiv 2023年
作者: Aubreville, Marc Stathonikos, Nikolas Donovan, Taryn A. Klopfleisch, Robert Ammeling, Jonas Ganz, Jonathan Wilm, Frauke Veta, Mitko Jabari, Samir Eckstein, Markus Annuscheit, Jonas Krumnow, Christian Bozaba, Engin Çayır, Sercan Gu, Hongyan Chen, Xiang Jahanifar, Mostafa Shephard, Adam Kondo, Satoshi Kasai, Satoshi Kotte, Sujatha Saipradeep, V.G. Lafarge, Maxime W. Koelzer, Viktor H. Wang, Ziyue Zhang, Yongbing Yang, Sen Wang, Xiyue Breininger, Katharina Bertram, Christof A. Technische Hochschule Ingolstadt Ingolstadt Germany Pathology Department UMC Utrecht Netherlands Department of Anatomic Pathology The Schwarzman Animal Medical Center New York United States Institute of Veterinary Pathology Freie Universität Berlin Berlin Germany Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Department Artificial Intelligence in Biomedical Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Computational Pathology Group Radboud UMC Nijmegen Netherlands Institute of Neuropathology University Hospital Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Institute of Pathology University Hospital Erlangen Friedrich-Alexander-Universität Erlangen-Nünberg Erlangen Germany Berlin Berlin Germany Artificial Intelligence Research Team Virasoft Corporation New York United States University of California Los Angeles United States University of Warwick United Kingdom Muroran Institute of Technology Muroran Japan Niigata University of Health and Welfare Niigata Japan TCS Research Tata Consultancy Services Ltd Hyderabad India Department of Pathology and Molecular Pathology University Hospital Zurich University of Zurich Zurich Switzerland Harbin Institute of Technology Shenzhen China College of Biomedical Engineering Sichuan University Chengdu China Department of Radiation Oncology Stanford USA 1 University School of Medicine Palo Alto United States Institute of Pathology University of Veterinary Medicine Vienna Austria
recognition of mitotic figures in histologic tumor specimens is highly relevant to patient outcome assessment. This task is challenging for algorithms and human experts alike, with deterioration of algorithmic perform... 详细信息
来源: 评论