咨询与建议

限定检索结果

文献类型

  • 129 篇 期刊文献
  • 102 篇 会议

馆藏范围

  • 231 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 181 篇 工学
    • 125 篇 计算机科学与技术...
    • 106 篇 软件工程
    • 40 篇 信息与通信工程
    • 39 篇 光学工程
    • 38 篇 生物工程
    • 33 篇 生物医学工程(可授...
    • 18 篇 控制科学与工程
    • 16 篇 电子科学与技术(可...
    • 15 篇 化学工程与技术
    • 12 篇 电气工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 航空宇航科学与技...
    • 4 篇 土木工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 测绘科学与技术
  • 116 篇 理学
    • 54 篇 数学
    • 48 篇 物理学
    • 39 篇 生物学
    • 13 篇 化学
    • 13 篇 统计学(可授理学、...
  • 44 篇 管理学
    • 24 篇 图书情报与档案管...
    • 22 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 21 篇 医学
    • 17 篇 基础医学(可授医学...
    • 17 篇 临床医学
    • 11 篇 药学(可授医学、理...
    • 5 篇 公共卫生与预防医...
  • 5 篇 法学
    • 4 篇 社会学
  • 4 篇 农学
  • 1 篇 经济学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 7 篇 semantics
  • 6 篇 image segmentati...
  • 6 篇 convolution
  • 6 篇 pixels
  • 5 篇 deep learning
  • 5 篇 generative adver...
  • 4 篇 distillation
  • 4 篇 task analysis
  • 4 篇 motion planning
  • 4 篇 image
  • 4 篇 graph neural net...
  • 4 篇 feature extracti...
  • 4 篇 tumors
  • 4 篇 image reconstruc...
  • 4 篇 object recogniti...
  • 4 篇 training
  • 3 篇 object detection
  • 3 篇 deep neural netw...
  • 3 篇 neural networks
  • 3 篇 cameras

机构

  • 28 篇 school of artifi...
  • 21 篇 siat branch shen...
  • 15 篇 national laborat...
  • 13 篇 shenzhen key lab...
  • 13 篇 shenzhen key lab...
  • 12 篇 shanghai artific...
  • 11 篇 university of ch...
  • 11 篇 department artif...
  • 10 篇 technische hochs...
  • 9 篇 pattern recognit...
  • 9 篇 department artif...
  • 8 篇 pattern recognit...
  • 7 篇 sensetime resear...
  • 7 篇 pattern recognit...
  • 7 篇 institute of vet...
  • 7 篇 pattern recognit...
  • 7 篇 beijing academy ...
  • 7 篇 department of co...
  • 6 篇 tsinghua univers...
  • 6 篇 state key lab on...

作者

  • 29 篇 breininger katha...
  • 25 篇 maier andreas
  • 22 篇 qiao yu
  • 12 篇 wang yali
  • 12 篇 lin yankai
  • 11 篇 zhou jie
  • 11 篇 li peng
  • 10 篇 dong chao
  • 9 篇 wilm frauke
  • 8 篇 sun maosong
  • 8 篇 ding mingyue
  • 8 篇 liu zhiyuan
  • 8 篇 schlereth maja
  • 8 篇 aubreville marc
  • 7 篇 cai chao
  • 6 篇 qiu jingna
  • 6 篇 klopfleisch robe...
  • 6 篇 yu qiao
  • 6 篇 ma zhanyu
  • 5 篇 yang seung hee

语言

  • 223 篇 英文
  • 6 篇 其他
  • 2 篇 中文
检索条件"机构=Artificial Intelligence and Pattern Recognition Lab"
231 条 记 录,以下是11-20 订阅
排序:
Neural Transformation Fields for Arbitrary-Styled Font Generation
Neural Transformation Fields for Arbitrary-Styled Font Gener...
收藏 引用
Conference on Computer Vision and pattern recognition (CVPR)
作者: Bin Fu Junjun He Jianjun Wang Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shanghai Artificial Intelligence Laboratory
Few-shot font generation (FFG), aiming at generating font images with a few samples, is an emerging topic in recent years due to the academic and commercial values. Typically, the FFG approaches follow the style-conte...
来源: 评论
MUSES: 3D-Controllable Image Generation via Multi-Modal Agent Collaboration
arXiv
收藏 引用
arXiv 2024年
作者: Ding, Yanbo Zhuang, Shaobin Li, Kunchang Yue, Zhengrong Qiao, Yu Wang, Yali Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China Shanghai Artificial Intelligence Laboratory China Shanghai Jiao Tong University China
Despite recent advancements in text-to-image generation, most existing methods struggle to create images with multiple objects and complex spatial relationships in the 3D world. To tackle this limitation, we introduce... 详细信息
来源: 评论
Offer Proprietary Algorithms Still Protection of Intellectual Property in the Age of Machine Learning?: A Case Study Using Dual Energy CT Data
Offer Proprietary Algorithms Still Protection of Intellectua...
收藏 引用
German Workshop on Medical Image Computing, 2022
作者: Maier, Andreas Yang, Seung Hee Maleki, Farhad Muthukrishnan, Nikesh Forghani, Reza Pattern Recognition Lab FAU Erlangen-Nürnberg Nürnberg Germany Department Artificial Intelligence in Medical Engineering FAU Erlangen-Nürnberg Nürnberg Germany McGill University Hospital McGill University Montreal Canada
来源: 评论
Generate Like Experts: Multi-Stage Font Generation by Incorporating Font Transfer Process into Diffusion Models
Generate Like Experts: Multi-Stage Font Generation by Incorp...
收藏 引用
Conference on Computer Vision and pattern recognition (CVPR)
作者: Bin Fu Fanghua Yu Anran Liu Zixuan Wang Jie Wen Junjun He Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences The University of Hong Kong Harbin Institute of Technology Shenzhen Shanghai Artificial Intelligence Laboratory
Few-shot font generation (FFG) produces stylized font images with a limited number of reference samples, which can significantly reduce labor costs in manual font designs. Most existing FFG methods follow the style-co... 详细信息
来源: 评论
Thrombus Detection in Non-contrast Head CT Using Graph Deep Learning
Thrombus Detection in Non-contrast Head CT Using Graph Deep ...
收藏 引用
German Workshop on Medical Image Computing, 2022
作者: Popp, Antonia Taubmann, Oliver Thamm, Florian Ditt, Hendrik Maier, Andreas Breininger, Katharina Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Germany Computed Tomography Siemens Healthineers AG Forchheim Germany Department Artificial Intelligence in Biomedical Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Germany
来源: 评论
Robust Augmentations for Small Object Detection of Aerial Images  7
Robust Augmentations for Small Object Detection of Aerial Im...
收藏 引用
7th IEEE International Conference on Network intelligence and Digital Content, IC-NIDC 2021
作者: Xiong, Weiyu Ma, Zhanyu Song, Yi-Zhe Beijing University of Posts and Telecommunications Pattern Recognition and Intelligent Systems Lab School of Artificial Intelligence Beijing100876 China Beijing Academy of Artificial Intelligence Beijing China University of Surrey SketchX CVSSP London United Kingdom
Object detection is one of the most fundamental but important computer vision tasks. However, small object detection remains an unsolved challenge due to insufficient detailed appearances and additional noises. Meanwh... 详细信息
来源: 评论
Automatic Classification of Neuromuscular Diseases in Children Using Photoacoustic Imaging
Automatic Classification of Neuromuscular Diseases in Childr...
收藏 引用
German Workshop on Medical Image Computing, 2022
作者: Schlereth, Maja Stromer, Daniel Breininger, Katharina Wagner, Alexandra Tan, Lina Maier, Andreas Knieling, Ferdinand Department of Artificial Intelligence in Biomedical Engineering FAU Erlangen-Nürnberg Erlangen Germany Pattern Recognition Lab FAU Erlangen-Nürnberg Erlangen Germany Department of Pediatrics and Adolescent Medicine Universitätsklinik Erlangen FAU Erlangen-Nürnberg Erlangen Germany
来源: 评论
Effective and Robust Detection of Adversarial Examples via Benford-Fourier Coefficients
收藏 引用
Machine intelligence Research 2022年
作者: Cheng-Cheng Ma Bao-Yuan Wu Yan-Bo Fan Yong Zhang Zhi-Feng Li National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences School of Artificial Intelligence University of Chinese Academy of Sciences School of Data Science The Chinese University of Hong Kong Shenzhen Research Institute of Big Data AI Lab Tencent Inc.
Adversarial example has been well known as a serious threat to deep neural networks(DNNs). In this work, we study the detection of adversarial examples based on the assumption that the output and internal responses of...
来源: 评论
Lightweight Landslide Detection Method Based On Depth Separable Convolution And Double Self-Attention Mechanism *
Lightweight Landslide Detection Method Based On Depth Separa...
收藏 引用
IEEE International Symposium on Geoscience and Remote Sensing (IGARSS)
作者: Weibin Li Yuhui Kong Rongfang Wang Chunlei Huo Jiawei Chen Yi Niu School of Artificial Intelligence Xidian University Xi’an China Lab. of AI Hangzhou Institute of Technology of Xidian University Hangzhou China National Laboratory of Pattern Recognition Beijing China
The landslide detection methods using remote sensing images are mostly based on the traditional convolutional neural network model with high depth and complexity. The paper proposes a lightweight method based on Depth...
来源: 评论
DegAE: A New Pretraining Paradigm for Low-Level Vision
DegAE: A New Pretraining Paradigm for Low-Level Vision
收藏 引用
Conference on Computer Vision and pattern recognition (CVPR)
作者: Yihao Liu Jingwen He Jinjin Gu Xiangtao Kong Yu Qiao Chao Dong Shanghai Artificial Intelligence Laboratory ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences The University of Sydney
Self-supervised pretraining has achieved remarkable success in high-level vision, but its application in low-level vision remains ambiguous and not well-established. What is the primitive intention of pretraining? Wha...
来源: 评论