咨询与建议

限定检索结果

文献类型

  • 129 篇 期刊文献
  • 102 篇 会议

馆藏范围

  • 231 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 181 篇 工学
    • 125 篇 计算机科学与技术...
    • 106 篇 软件工程
    • 40 篇 信息与通信工程
    • 39 篇 光学工程
    • 38 篇 生物工程
    • 33 篇 生物医学工程(可授...
    • 18 篇 控制科学与工程
    • 16 篇 电子科学与技术(可...
    • 15 篇 化学工程与技术
    • 12 篇 电气工程
    • 10 篇 机械工程
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 航空宇航科学与技...
    • 4 篇 土木工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 测绘科学与技术
  • 116 篇 理学
    • 54 篇 数学
    • 48 篇 物理学
    • 39 篇 生物学
    • 13 篇 化学
    • 13 篇 统计学(可授理学、...
  • 44 篇 管理学
    • 24 篇 图书情报与档案管...
    • 22 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 21 篇 医学
    • 17 篇 基础医学(可授医学...
    • 17 篇 临床医学
    • 11 篇 药学(可授医学、理...
    • 5 篇 公共卫生与预防医...
  • 5 篇 法学
    • 4 篇 社会学
  • 4 篇 农学
  • 1 篇 经济学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 7 篇 semantics
  • 6 篇 image segmentati...
  • 6 篇 convolution
  • 6 篇 pixels
  • 5 篇 deep learning
  • 5 篇 generative adver...
  • 4 篇 distillation
  • 4 篇 task analysis
  • 4 篇 motion planning
  • 4 篇 image
  • 4 篇 graph neural net...
  • 4 篇 feature extracti...
  • 4 篇 tumors
  • 4 篇 image reconstruc...
  • 4 篇 object recogniti...
  • 4 篇 training
  • 3 篇 object detection
  • 3 篇 deep neural netw...
  • 3 篇 neural networks
  • 3 篇 cameras

机构

  • 28 篇 school of artifi...
  • 21 篇 siat branch shen...
  • 15 篇 national laborat...
  • 13 篇 shenzhen key lab...
  • 13 篇 shenzhen key lab...
  • 12 篇 shanghai artific...
  • 11 篇 university of ch...
  • 11 篇 department artif...
  • 10 篇 technische hochs...
  • 9 篇 pattern recognit...
  • 9 篇 department artif...
  • 8 篇 pattern recognit...
  • 7 篇 sensetime resear...
  • 7 篇 pattern recognit...
  • 7 篇 institute of vet...
  • 7 篇 pattern recognit...
  • 7 篇 beijing academy ...
  • 7 篇 department of co...
  • 6 篇 tsinghua univers...
  • 6 篇 state key lab on...

作者

  • 29 篇 breininger katha...
  • 25 篇 maier andreas
  • 22 篇 qiao yu
  • 12 篇 wang yali
  • 12 篇 lin yankai
  • 11 篇 zhou jie
  • 11 篇 li peng
  • 10 篇 dong chao
  • 9 篇 wilm frauke
  • 8 篇 sun maosong
  • 8 篇 ding mingyue
  • 8 篇 liu zhiyuan
  • 8 篇 schlereth maja
  • 8 篇 aubreville marc
  • 7 篇 cai chao
  • 6 篇 qiu jingna
  • 6 篇 klopfleisch robe...
  • 6 篇 yu qiao
  • 6 篇 ma zhanyu
  • 5 篇 yang seung hee

语言

  • 223 篇 英文
  • 6 篇 其他
  • 2 篇 中文
检索条件"机构=Artificial Intelligence and Pattern Recognition Lab"
231 条 记 录,以下是81-90 订阅
排序:
Weak celestial source fringes detection based on channel attention shrinkage networks and cluster-based anchor boxes generation algorithm
收藏 引用
DIGITAL SIGNAL PROCESSING 2022年 第0期129卷
作者: Yan, Ruiqing Ma, Rong Liu, Wei Yin, Zongyao Zhao, Zhengang Chen, Siying Chang, Sheng Zhu, Hui Hu, Dan Yu, Xianchuan Beijing Normal Univ Sch Artificial Intelligence 19 Waida Jie Xinjie Kou Beijing 100875 Peoples R China Chinese Acad Sci Inst Automati Natl Lab Pattern Recognition Beijing 100190 Peoples R China Univ North Carolina Chapel Hill Dept Radiol BRIC Chapel Hill NC 27599 USA Chinese Acad Sci Natl Astron Observat Beijing 100101 Peoples R China
Detecting weak celestial source signals from massive radio data is a very challenging task because the radiation received by radio telescope is very weak and prone to disturbances. In order to detect these weak signal... 详细信息
来源: 评论
Enhanced Boundary Learning for Glass-like Object Segmentation
arXiv
收藏 引用
arXiv 2021年
作者: He, Hao Li, Xiangtai Cheng, Guangliang Shi, Jianping Tong, Yunhai Meng, Gaofeng Prinet, Véronique Weng, Lubin National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China Peking University China SenseTime Group Research Centre for Artificial Intelligence and Robotics HK Institute of Science & Innovation CAS 6 Shanghai AI Lab China
Glass-like objects such as windows, bottles, and mirrors exist widely in the real world. Sensing these objects has many applications, including robot navigation and grasping. However, this task is very challenging due... 详细信息
来源: 评论
PoCaP Corpus: A Multimodal Dataset for Smart Operating Room Speech Assistant using Interventional Radiology Workflow Analysis
arXiv
收藏 引用
arXiv 2022年
作者: Demir, Kubilay Can May, Matthias Schmid, Axel Uder, Michael Breininger, Katharina Weise, Tobias Maier, Andreas Yang, Seung Hee Speech & Language Processing Lab. Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Radiologisches Institut Universitätsklinikum Erlangen Erlangen Germany Artificial Intelligence in Medical Imaging Lab. Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany
This paper presents a new multimodal interventional radiology dataset, called PoCaP (Port Catheter Placement) Corpus. This corpus consists of speech and audio signals in German, X-ray images, and system commands colle... 详细信息
来源: 评论
Enhanced Boundary Learning for Glass-like Object Segmentation
Enhanced Boundary Learning for Glass-like Object Segmentatio...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Hao He Xiangtai Li Guangliang Cheng Jianping Shi Yunhai Tong Gaofeng Meng Véronique Prinet LuBin Weng National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences School of Artificial Intelligence University of Chinese Academy of Sciences Key Laboratory of Machine Perception (MOE) Peking University SenseTime Group Research Shanghai AI Lab Centre for Artificial Intelligence and Robotics HK Institute of Science & Innovation CAS
Glass-like objects such as windows, bottles, and mirrors exist widely in the real world. Sensing these objects has many applications, including robot navigation and grasping. However, this task is very challenging due... 详细信息
来源: 评论
VideoPipe 2022 Challenge: Real-World Video Understanding for Urban Pipe Inspection
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Yi Zhang, Xuan Li, Ying Liang, Guixin Jiang, Yabing Qiu, Lixia Tang, Haiping Xie, Fei Yao, Wei Dai, Yi Qiao, Yu Wang, Yali ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China Shenzhen Bwell Technology Co. Ltd China Shenzhen Longhua Drainage Co. Ltd China Shanghai AI Laboratory Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Video understanding is an important problem in computer vision. Currently, the well-studied task in this research is human action recognition, where the clips are manually trimmed from the long videos, and a single cl... 详细信息
来源: 评论
From Mimicking to Integrating: Knowledge Integration for Pre-Trained Language Models
arXiv
收藏 引用
arXiv 2022年
作者: Li, Lei Lin, Yankai Ren, Xuancheng Zhao, Guangxiang Li, Peng Zhou, Jie Sun, Xu MOE Key Lab of Computational Linguistics School of Computer Science Peking University China Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China Tsinghua University China Pattern Recognition Center WeChat AI Tencent Inc. China
Investigating better ways to reuse the released pre-trained language models (PLMs) can significantly reduce the computational cost and the potential environmental side-effects. This paper explores a novel PLM reuse pa... 详细信息
来源: 评论
Face Presentation Attack Detection
arXiv
收藏 引用
arXiv 2022年
作者: Yu, Zitong Zhao, Chenxu Lei, Zhen ROSE Lab Nanyang Technological University Singapore639798 Singapore SailYond Technology Beijing100083 China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China Beijing100049 China Centre for Artificial Intelligence and Robotics Hong Kong Institute of Science & Innovation Chinese Academy of Sciences Hong Kong
Face recognition technology has been widely used in daily interactive applications such as checking-in and mobile payment due to its convenience and high accuracy. However, its vulnerability to presentation attacks (P... 详细信息
来源: 评论
BrainCog: A Spiking Neural Network Based Brain-Inspired Cognitive intelligence Engine for Brain-Inspired AI and Brain Simulation
SSRN
收藏 引用
SSRN 2022年
作者: Zeng, Yi Zhao, Dongcheng Zhao, Feifei Shen, Guobin Dong, Yiting Lu, Enmeng Zhang, Qian Sun, Yinqian Liang, Qian Zhao, Yuxuan Zhao, Zhuoya Fang, Hongjian Wang, Yuwei Li, Yang Liu, Xin Du, Chengcheng Kong, Qingqun Ruan, Zizhe Bi, Weida Brain-inspired Cognitive Intelligence Lab Institute of Automation Chinese Academy of Sciences Beijing100190 China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Shanghai200031 China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing100049 China School of Future Technology University of Chinese Academy of Sciences Beijing100049 China
Spiking Neural Networks (SNNs) serve as an appropriate level of abstraction to bring inspirations from brain and cognition to artificial intelligence (AI). Existing software frameworks separately develop SNNs-based br... 详细信息
来源: 评论
Language Cognition and Language Computation Human and Machine Language Understanding
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Shaonan Ding, Nai Lin, Nan Zhang, Jiajun Zong, Chengqing National Laboratory of Pattern Recognition Institute of Automation Cas Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China Key Laboratory for Biomedical Engineering of Ministry of Education College of Biomedical Engineering and Instrument Sciences Zhejiang University Hangzhou China Zhejiang Lab Zhejiang University Hangzhou China Cas Key Laboratory of Behavioural Sciences Institute of Psychology Beijing China Department of Psychology University of Chinese Academy of Sciences Beijing China
Language understanding is a key scientific issue in the fields of cognitive and computer science. However, the two disciplines differ substantially in the specific research questions. Cognitive science focuses on anal... 详细信息
来源: 评论
Efficient Image Super-Resolution Using Pixel Attention  16th
Efficient Image Super-Resolution Using Pixel Attention
收藏 引用
Workshops held at the 16th European Conference on Computer Vision, ECCV 2020
作者: Zhao, Hengyuan Kong, Xiangtao He, Jingwen Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China University of Chinese Academy of Sciences Beijing China
This work aims at designing a lightweight convolutional neural network for image super resolution (SR). With simplicity bare in mind, we construct a pretty concise and effective network with a newly proposed pixel att... 详细信息
来源: 评论