咨询与建议

限定检索结果

文献类型

  • 463 篇 期刊文献
  • 440 篇 会议

馆藏范围

  • 903 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 646 篇 工学
    • 483 篇 计算机科学与技术...
    • 430 篇 软件工程
    • 120 篇 信息与通信工程
    • 110 篇 生物工程
    • 97 篇 光学工程
    • 65 篇 控制科学与工程
    • 60 篇 生物医学工程(可授...
    • 55 篇 化学工程与技术
    • 51 篇 机械工程
    • 41 篇 电气工程
    • 40 篇 电子科学与技术(可...
    • 25 篇 仪器科学与技术
    • 18 篇 建筑学
    • 15 篇 土木工程
    • 14 篇 材料科学与工程(可...
    • 13 篇 航空宇航科学与技...
    • 11 篇 交通运输工程
  • 380 篇 理学
    • 162 篇 数学
    • 136 篇 物理学
    • 120 篇 生物学
    • 53 篇 化学
    • 42 篇 统计学(可授理学、...
    • 17 篇 系统科学
  • 160 篇 管理学
    • 105 篇 图书情报与档案管...
    • 65 篇 管理科学与工程(可...
    • 16 篇 工商管理
  • 36 篇 医学
    • 29 篇 临床医学
    • 19 篇 基础医学(可授医学...
    • 14 篇 药学(可授医学、理...
  • 19 篇 法学
    • 18 篇 社会学
  • 6 篇 文学
  • 6 篇 农学
  • 4 篇 教育学
  • 4 篇 军事学
  • 3 篇 艺术学
  • 1 篇 哲学
  • 1 篇 经济学

主题

  • 51 篇 semantics
  • 41 篇 feature extracti...
  • 32 篇 image segmentati...
  • 28 篇 training
  • 23 篇 pattern recognit...
  • 22 篇 face recognition
  • 21 篇 object detection
  • 21 篇 computer vision
  • 20 篇 convolution
  • 20 篇 visualization
  • 18 篇 image processing
  • 18 篇 artificial intel...
  • 17 篇 deep learning
  • 16 篇 image enhancemen...
  • 15 篇 task analysis
  • 15 篇 image recognitio...
  • 15 篇 image reconstruc...
  • 15 篇 shape
  • 13 篇 laboratories
  • 13 篇 decoding

机构

  • 326 篇 school of artifi...
  • 201 篇 national laborat...
  • 57 篇 national laborat...
  • 53 篇 cas center for e...
  • 30 篇 university of ch...
  • 27 篇 national laborat...
  • 27 篇 the school of ar...
  • 24 篇 institute for pa...
  • 24 篇 center for excel...
  • 20 篇 school of artifi...
  • 20 篇 gaoling school o...
  • 20 篇 pattern recognit...
  • 20 篇 the national lab...
  • 18 篇 peng cheng labor...
  • 18 篇 state key labora...
  • 16 篇 beijing academy ...
  • 16 篇 jiangsu provinci...
  • 16 篇 the pattern reco...
  • 16 篇 center for resea...
  • 16 篇 school of future...

作者

  • 44 篇 zhao jun
  • 43 篇 tao jianhua
  • 40 篇 liu kang
  • 33 篇 zhang tianxu
  • 24 篇 wang jinqiao
  • 23 篇 jianhua tao
  • 21 篇 zhou jie
  • 21 篇 chen yubo
  • 21 篇 ma zhanyu
  • 21 篇 tang ming
  • 18 篇 zhang jiajun
  • 18 篇 sun zhenan
  • 18 篇 lin yankai
  • 18 篇 liu bin
  • 17 篇 liang wang
  • 16 篇 yi jiangyan
  • 16 篇 he shizhu
  • 16 篇 zong chengqing
  • 16 篇 wu xiao-jun
  • 16 篇 lian zheng

语言

  • 851 篇 英文
  • 27 篇 中文
  • 25 篇 其他
检索条件"机构=Artificial Intelligence and Pattern Recognition Laboratory"
903 条 记 录,以下是111-120 订阅
排序:
Neural Transformation Fields for Arbitrary-Styled Font Generation
Neural Transformation Fields for Arbitrary-Styled Font Gener...
收藏 引用
Conference on Computer Vision and pattern recognition (CVPR)
作者: Bin Fu Junjun He Jianjun Wang Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shanghai Artificial Intelligence Laboratory
Few-shot font generation (FFG), aiming at generating font images with a few samples, is an emerging topic in recent years due to the academic and commercial values. Typically, the FFG approaches follow the style-conte...
来源: 评论
STRNet:Triple-stream Spatiotemporal Relation Network for Action recognition
收藏 引用
International Journal of Automation and computing 2021年 第5期18卷 718-730页
作者: Zhi-Wei Xu Xiao-Jun Wu Josef Kittler School of Artificial Intelligence and Computer Science Jiangnan UniversityWuxi 214122China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Wuxi 214122China Centre for Vision Speech and Signal ProcessingUniversity of SurreyGuildfordGU27XHUK
Learning comprehensive spatiotemporal features is crucial for human action recognition. Existing methods tend to model the spatiotemporal feature blocks in an integrate-separate-integrate form, such as appearance-and-... 详细信息
来源: 评论
Generating Cartoon Images from Face Photos with Cycle-Consistent Adversarial Networks
收藏 引用
Computers, Materials & Continua 2021年 第11期69卷 2733-2747页
作者: Tao Zhang Zhanjie Zhang Wenjing Jia Xiangjian He Jie Yang School of Artificial Intelligence and Computer Science Jiangnan UniversityWuxi214000China Key Laboratory of Artificial Intelligence Jiangsu214000China The Global Big Data Technologies Centre University of Technology SydneyUltimoNSW2007Australia The Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong UniversityShanghai201100China
The generative adversarial network(GAN)is first proposed in 2014,and this kind of network model is machine learning systems that can learn to measure a given distribution of data,one of the most important applications... 详细信息
来源: 评论
ZBS: Zero-Shot Background Subtraction via Instance-Level Background Modeling and Foreground Selection
ZBS: Zero-Shot Background Subtraction via Instance-Level Bac...
收藏 引用
Conference on Computer Vision and pattern recognition (CVPR)
作者: Yongqi An Xu Zhao Tao Yu Haiyun Gu Chaoyang Zhao Ming Tang Jinqiao Wang National Laboratory of Pattern Recognition Institute of Automation CAS Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China
Background subtraction (BGS) aims to extract all moving objects in the video frames to obtain binary foreground segmentation masks. Deep learning has been widely used in this field. Compared with supervised-based BGS ...
来源: 评论
ZBS: Zero-shot Background Subtraction via Instance-level Background Modeling and Foreground Selection
arXiv
收藏 引用
arXiv 2023年
作者: An, Yongqi Zhao, Xu Yu, Tao Guo, Haiyun Zhao, Chaoyang Tang, Ming Wang, Jinqiao National Laboratory of Pattern Recognition Institute of Automation CAS Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China
Background subtraction (BGS) aims to extract all moving objects in the video frames to obtain binary foreground segmentation masks. Deep learning has been widely used in this field. Compared with supervised-based BGS ... 详细信息
来源: 评论
Feature Space Renormalization for Semi-supervised Learning
arXiv
收藏 引用
arXiv 2023年
作者: Sun, Jun Mao, Zhongjie Li, Chao Zhou, Chao Wu, Xiao-Jun The School of Artificial Intelligence and Computer Science Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University 1800 Lihu Avenue Jiangsu Wuxi214122 China The Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University 1800 Lihu Avenue Jiangsu Wuxi214122 China
Semi-supervised learning (SSL) has been proven to be a powerful method for leveraging unlabelled data to alleviate models' dependence on large labelled datasets. The common framework among recent approaches is to ... 详细信息
来源: 评论
Gravitational Wave Detection Based on Squeeze-and-excitation Shrinkage Networks and Multiple Detector Coherent SNR
收藏 引用
Research in Astronomy and Astrophysics 2022年 第11期22卷 84-96页
作者: Rui-Qing Yan Wei Liu Zong-Yao Yin Rong Ma Si-Ying Chen Dan Hu Dan Wu Xian-Chuan Yu School of Artificial Intelligence Beijing Normal UniversityBeijing 100875China National Laboratory of Pattern Recognition Institute of AutomationChinese Academy of SciencesBeijing 100190China Department of Radiology and BRIC University of North Carolina at Chapel HillChapel HillNC 27599 United States of America National Astronomical Observatories Chinese Academy of SciencesBeijing 100101China
Deep learning techniques have been applied to the detection of gravitational wave signals in the past few *** existing methods focus on the data obtained by a single ***,the signal-to-noise ratio(SNR)of gravitational ... 详细信息
来源: 评论
Learning to Rank Pre-trained Vision-Language Models for Downstream Tasks
arXiv
收藏 引用
arXiv 2024年
作者: Ding, Yuhe Jiang, Bo Zheng, Aihua Xu, Qin Liang, Jian School of Computer Science and Technology Anhui University China School of Artificial Intelligence Anhui University China New Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences China
Vision language models (VLMs) like CLIP show stellar zero-shot capability on classification benchmarks. However, selecting the VLM with the highest performance on the unlabeled downstream task is non-trivial. Existing... 详细信息
来源: 评论
Jailbreak Attacks and Defenses against Multimodal Generative Models: A Survey
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Xuannan Cui, Xing Li, Peipei Li, Zekun Huang, Huaibo Xia, Shuhan Zhang, Miaoxuan Zou, Yueying He, Ran School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China School of Computer Science University of California Santa Barbara United States State Key Laboratory of Multimodal Artificial Intelligence Systems CASIA New Laboratory of Pattern Recognition CASIA School of Artificial Intelligence University of Chinese Academy of Sciences Beijing100190 China
The rapid evolution of multimodal foundation models has led to significant advancements in cross-modal understanding and generation across diverse modalities, including text, images, audio, and video. However, these m... 详细信息
来源: 评论
Learning long-term temporal contexts using skip RNN for continuous emotion recognition
收藏 引用
Virtual Reality & Intelligent Hardware 2021年 第1期3卷 55-64页
作者: Jian HUANG Bin LIU Jianhua TAO National Laboratory of Pattern Recognition Institute of AutomationChinese Academy of SciencesBeijing 100049China CAS Center for Excellence in Brain Science and Intelligence Technology Beijing 100049China School of Artificial Intelligence University of Chinese Academy of SciencesBeijing 100049China
Background Continuous emotion recognition as a function of time assigns emotional values to every frame in a *** long-term temporal context information is essential for continuous emotion recognition *** For this purp... 详细信息
来源: 评论