咨询与建议

限定检索结果

文献类型

  • 465 篇 期刊文献
  • 440 篇 会议

馆藏范围

  • 905 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 647 篇 工学
    • 483 篇 计算机科学与技术...
    • 428 篇 软件工程
    • 119 篇 信息与通信工程
    • 110 篇 生物工程
    • 97 篇 光学工程
    • 66 篇 控制科学与工程
    • 60 篇 生物医学工程(可授...
    • 55 篇 化学工程与技术
    • 51 篇 机械工程
    • 42 篇 电气工程
    • 41 篇 电子科学与技术(可...
    • 25 篇 仪器科学与技术
    • 18 篇 建筑学
    • 15 篇 土木工程
    • 14 篇 材料科学与工程(可...
    • 13 篇 航空宇航科学与技...
    • 11 篇 交通运输工程
  • 380 篇 理学
    • 162 篇 数学
    • 136 篇 物理学
    • 120 篇 生物学
    • 53 篇 化学
    • 43 篇 统计学(可授理学、...
    • 17 篇 系统科学
  • 161 篇 管理学
    • 105 篇 图书情报与档案管...
    • 65 篇 管理科学与工程(可...
    • 16 篇 工商管理
  • 37 篇 医学
    • 29 篇 临床医学
    • 20 篇 基础医学(可授医学...
    • 14 篇 药学(可授医学、理...
  • 19 篇 法学
    • 18 篇 社会学
  • 6 篇 文学
  • 6 篇 农学
  • 4 篇 教育学
  • 4 篇 军事学
  • 3 篇 艺术学
  • 1 篇 哲学
  • 1 篇 经济学

主题

  • 51 篇 semantics
  • 42 篇 feature extracti...
  • 32 篇 image segmentati...
  • 29 篇 training
  • 23 篇 pattern recognit...
  • 22 篇 face recognition
  • 21 篇 object detection
  • 21 篇 computer vision
  • 20 篇 convolution
  • 20 篇 visualization
  • 18 篇 image processing
  • 18 篇 artificial intel...
  • 17 篇 deep learning
  • 16 篇 image enhancemen...
  • 15 篇 task analysis
  • 15 篇 image recognitio...
  • 15 篇 image reconstruc...
  • 15 篇 shape
  • 13 篇 laboratories
  • 13 篇 decoding

机构

  • 326 篇 school of artifi...
  • 201 篇 national laborat...
  • 57 篇 national laborat...
  • 53 篇 cas center for e...
  • 30 篇 university of ch...
  • 27 篇 national laborat...
  • 27 篇 the school of ar...
  • 24 篇 institute for pa...
  • 24 篇 center for excel...
  • 20 篇 school of artifi...
  • 20 篇 gaoling school o...
  • 20 篇 pattern recognit...
  • 20 篇 the national lab...
  • 18 篇 peng cheng labor...
  • 18 篇 state key labora...
  • 16 篇 beijing academy ...
  • 16 篇 jiangsu provinci...
  • 16 篇 the pattern reco...
  • 16 篇 center for resea...
  • 16 篇 school of future...

作者

  • 44 篇 zhao jun
  • 43 篇 tao jianhua
  • 40 篇 liu kang
  • 33 篇 zhang tianxu
  • 24 篇 wang jinqiao
  • 23 篇 jianhua tao
  • 21 篇 zhou jie
  • 21 篇 chen yubo
  • 21 篇 ma zhanyu
  • 21 篇 tang ming
  • 18 篇 zhang jiajun
  • 18 篇 sun zhenan
  • 18 篇 lin yankai
  • 18 篇 liu bin
  • 17 篇 liang wang
  • 16 篇 yi jiangyan
  • 16 篇 he shizhu
  • 16 篇 zong chengqing
  • 16 篇 wu xiao-jun
  • 16 篇 lian zheng

语言

  • 851 篇 英文
  • 27 篇 其他
  • 27 篇 中文
检索条件"机构=Artificial Intelligence and Pattern Recognition Laboratory"
905 条 记 录,以下是71-80 订阅
排序:
Multi-Feature Super-Resolution Network for Cloth Wrinkle Synthesis
收藏 引用
Journal of Computer Science & Technology 2021年 第3期36卷 478-493页
作者: Lan Chen Juntao Ye Xiaopeng Zhang National Laboratory of Pattern Recognition Institute of AutomationChinese Academy of SciencesBeijing 100190China School of Artificial Intelligence University of Chinese Academy of SciencesBeijing 100049China Zhejiang Lab Hangzhou 311121China
Existing physical cloth simulators suffer from expensive computation and difficulties in tuning mechanical parameters to get desired wrinkling ***-driven methods provide an alternative *** typically synthesize cloth a... 详细信息
来源: 评论
Unpaired Image-Text Matching via Multimodal Aligned Conceptual Knowledge
收藏 引用
IEEE Transactions on pattern Analysis and Machine intelligence 2024年 第7期47卷 5160-5176页
作者: Yan Huang Yuming Wang Yunan Zeng Junshi Huang Zhenhua Chai Liang Wang New Laboratory of Pattern Recognition (NLPR) State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS) Institute of Automation Chinese Academy of Sciences (CASIA) Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences (UCAS) Beijing China AI Lab Meituan Beijing China
Recently, the accuracy of image-text matching has been greatly improved by multimodal pretrained models, all of which use millions or billions of paired images and texts for supervised model learning. Different from t... 详细信息
来源: 评论
Effective and Robust Detection of Adversarial Examples via Benford-Fourier Coefficients
收藏 引用
Machine intelligence Research 2023年 第5期20卷 666-682页
作者: Cheng-Cheng Ma Bao-Yuan Wu Yan-Bo Fan Yong Zhang Zhi-Feng Li National Laboratory of Pattern Recognition Institute of AutomationChinese Academy of SciencesBeijing 100190China School of Artificial Intelligence University of Chinese Academy of SciencesBeijing 100049China School of Data Science The Chinese University of Hong KongShenzhen 518172China Shenzhen Research Institute of Big Data Shenzhen 518172China AI Lab Tencent Inc.Shenzhen 518057China
Adversarial example has been well known as a serious threat to deep neural networks(DNNs).In this work,we study the detection of adversarial examples based on the assumption that the output and internal responses of o... 详细信息
来源: 评论
Antigen-specific antibody design via direct energy-based preference optimization  24
Antigen-specific antibody design via direct energy-based pre...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Xiangxin Zhou Dongyu Xue Ruizhe Chen Zaixiang Zheng Liang Wang Quanquan Gu School of Artificial Intelligence University of Chinese Academy of Sciences and New Laboratory of Pattern Recognition (NLPR) State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS) Institute of Automation Chinese Academy of Sciences (CASIA) and ByteDance Research ByteDance Research College of Computer Science and Electronic Engineering Hunan University and ByteDance Research School of Artificial Intelligence University of Chinese Academy of Sciences and New Laboratory of Pattern Recognition (NLPR) State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS) Institute of Automation Chinese Academy of Sciences (CASIA)
Antibody design, a crucial task with significant implications across various disciplines such as therapeutics and biology, presents considerable challenges due to its intricate nature. In this paper, we tackle antigen...
来源: 评论
Document-Level Relation Extraction via Pair-Aware and Entity-Enhanced Representation Learning  29
Document-Level Relation Extraction via Pair-Aware and Entity...
收藏 引用
29th International Conference on Computational Linguistics, COLING 2022
作者: Huang, Xiusheng Yang, Hang Chen, Yubo Zhao, Jun Liu, Kang Sun, Weijian Zhao, Zuyu School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China National Laboratory of Pattern Recognition Institute of Automation CAS Beijing China Huawei Technologies Co. Ltd Shenzhen China Beijing Academy of Artificial Intelligence Beijing China
Document-level relation extraction aims to recognize relations among multiple entity pairs from a whole piece of article. Recent methods achieve considerable performance but still suffer from two challenges: a) the re... 详细信息
来源: 评论
Everyday Object Meets Vision-and-Language Navigation Agent via Backdoor  38
Everyday Object Meets Vision-and-Language Navigation Agent v...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: He, Keji Chen, Kehan Bai, Jiawang Huang, Yan Wu, Qi Xia, Shu-Tao Wang, Liang Shandong University China New Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China Tencent China School of Computer Science University of Adelaide Australia Tsinghua Shenzhen International Graduate School Tsinghua University China
Vision-and-Language Navigation (VLN) requires an agent to dynamically explore environments following natural language. The VLN agent, closely integrated into daily lives, poses a substantial threat to the security of ...
来源: 评论
Mining High Quality patterns Using Multi-Objective Evolutionary Algorithm (Extended Abstract)
Mining High Quality Patterns Using Multi-Objective Evolution...
收藏 引用
International Conference on Data Engineering
作者: Wei Fang Qiang Zhang Jun Sun Xiaojun Wu International Joint Laboratory on Artificial Intelligence of Jiangsu Province Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi China
Most studies on pattern mining have considered only one pattern, such as frequent pattern or high-utility pattern, which is difficult to meet the increasingly diverse needs of users. In this paper, a novel multi-objec...
来源: 评论
EACNet:Ensemble adversarial co-training neural network for handling missing modalities in MRI images for brain tumor segmentation
收藏 引用
Journal of Measurement Science and Instrumentation 2025年 第1期16卷 11-25页
作者: RAMADHAN Amran Juma CHEN Jing PENG Junlan School of Artificial Intelligence and Computer Science Jiangnan UniversityWuxi 214122China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computing Intelligence Jiangnan UniversityWuxi 214122China
Brain tumor segmentation is critical in clinical diagnosis and treatment *** methods for brain tumor segmentation with missing modalities often struggle when dealing with multiple missing modalities,a common scenario ... 详细信息
来源: 评论
Multi-view 3D Human Physique Dataset Construction For Robust Digital Human Modeling of Natural Scenes  8
Multi-view 3D Human Physique Dataset Construction For Robust...
收藏 引用
8th International Conference on Communication and Information Processing, ICCIP 2022
作者: Lin, Weitao Zhang, Jiguang Zhang, Zhaohui Xu, Shibiao Xu, Hao Zhang, Xiaopeng School of Artificial Intelligence University of Chinese Academy of Sciences China China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences China Co. Ltd China
A large number of diverse data sets are necessary for networks to predict human body parameters and reconstruct 3D body models from images. Due to the high cost of motion capture and body scanning, high precision pose... 详细信息
来源: 评论
Detailed Object Description with Controllable Dimensions
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Xinran Zhang, Haiwen Li, Baoteng Liang, Kongming Sun, Hao He, Zhongjiang Ma, Zhanyu Guo, Jun Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China China Telecom Artificial Intelligence Technology Co. Ltd Beijing100034 China
Object description plays an important role for visually impaired individuals to understand and compare the differences between objects. Recent multimodal large language models (MLLMs) exhibit powerful perceptual abili... 详细信息
来源: 评论