咨询与建议

限定检索结果

文献类型

  • 235 篇 会议
  • 227 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 464 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 293 篇 工学
    • 193 篇 计算机科学与技术...
    • 177 篇 软件工程
    • 105 篇 控制科学与工程
    • 55 篇 生物工程
    • 51 篇 信息与通信工程
    • 35 篇 机械工程
    • 31 篇 光学工程
    • 28 篇 生物医学工程(可授...
    • 19 篇 交通运输工程
    • 16 篇 仪器科学与技术
    • 16 篇 电气工程
    • 14 篇 化学工程与技术
    • 14 篇 安全科学与工程
    • 13 篇 电子科学与技术(可...
    • 12 篇 力学(可授工学、理...
    • 9 篇 土木工程
    • 8 篇 建筑学
  • 158 篇 理学
    • 76 篇 数学
    • 56 篇 物理学
    • 53 篇 生物学
    • 32 篇 统计学(可授理学、...
    • 20 篇 系统科学
    • 11 篇 化学
  • 60 篇 管理学
    • 42 篇 管理科学与工程(可...
    • 26 篇 图书情报与档案管...
    • 14 篇 工商管理
  • 17 篇 法学
    • 15 篇 社会学
  • 14 篇 医学
    • 14 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 6 篇 农学
  • 3 篇 经济学
  • 2 篇 教育学
  • 1 篇 文学

主题

  • 19 篇 navigation
  • 16 篇 reinforcement le...
  • 16 篇 training
  • 13 篇 feature extracti...
  • 11 篇 convolution
  • 11 篇 semantics
  • 10 篇 robots
  • 10 篇 trajectory
  • 10 篇 robot kinematics
  • 9 篇 legged locomotio...
  • 9 篇 task analysis
  • 9 篇 accuracy
  • 9 篇 computer vision
  • 8 篇 computational mo...
  • 8 篇 robot sensing sy...
  • 8 篇 predictive model...
  • 8 篇 uncertainty
  • 7 篇 deep learning
  • 7 篇 simulation
  • 7 篇 three-dimensiona...

机构

  • 31 篇 siat branch shen...
  • 17 篇 university of ch...
  • 15 篇 institute of art...
  • 13 篇 shenzhen key lab...
  • 9 篇 intelligent robo...
  • 8 篇 nanjing institut...
  • 7 篇 shanghai ai lab
  • 7 篇 vector institute...
  • 7 篇 engineering rese...
  • 7 篇 school of artifi...
  • 7 篇 cvir lab changch...
  • 7 篇 guangdong provin...
  • 7 篇 shenzhen institu...
  • 7 篇 institute of rob...
  • 7 篇 nju-horizon inte...
  • 6 篇 bosch center for...
  • 6 篇 sensetime resear...
  • 6 篇 department of el...
  • 6 篇 the learning sys...
  • 6 篇 college of artif...

作者

  • 24 篇 qiao yu
  • 15 篇 schoellig angela...
  • 10 篇 dong chao
  • 9 篇 zhou siqi
  • 9 篇 erdal kayacan
  • 9 篇 xueming xiao
  • 9 篇 fang yi
  • 9 篇 meibao yao
  • 9 篇 bennewitz maren
  • 8 篇 xinyu wu
  • 8 篇 wu xinyu
  • 8 篇 wang yali
  • 8 篇 wen congcong
  • 7 篇 lu jing
  • 7 篇 brunke lukas
  • 7 篇 chen kai
  • 6 篇 hwangbo jemin
  • 6 篇 pavan chakrabort...
  • 6 篇 huang hao
  • 6 篇 yi fang

语言

  • 413 篇 英文
  • 46 篇 其他
  • 5 篇 中文
检索条件"机构=Artificial Intelligence and Robotics Lab"
464 条 记 录,以下是11-20 订阅
排序:
Failure Prevention in Bimanual Robots using Deep Deterministic Policy Gradient
Failure Prevention in Bimanual Robots using Deep Determinist...
收藏 引用
IEEE Signal Processing and Communications Applications (SIU)
作者: Asel Menekşe Ak Abdullah Cihan Sanem Sarıel Artificial Intelligence and Robotics Laboratory (AIR Lab) Istanbul Technical University Istanbul Turkey
One of the key challenges in learning robot object interaction behavior is to obtain an optimal policy that accomplishes the goal safely. In reinforcement learning, representing both the goal and safety constraints wi... 详细信息
来源: 评论
Particle Swarm Optimization Tuned Compensation Function Observer Based Control Method for Ship Motion  13
Particle Swarm Optimization Tuned Compensation Function Obse...
收藏 引用
13th IEEE Data Driven Control and Learning Systems Conference, DDCLS 2024
作者: Ren, Jia Wang, Zhaoxia Chen, Zengqiang Sun, Mingwei Sun, Qinglin College of Artificial Intelligence Nankai University Tianjin300350 China School of Computing and Information Systems Singapore Management University Singapore178902 Singapore Key Lab of Intelligent Robotics of Tianjin Tianjin300350 China
To achieve more stable and rapid control of ship motion, we proposed the Compensation Function Observer (CFO)-based control algorithm and used the Particle Swarm Optimization (PSO) to adjust its parameters. The perfor... 详细信息
来源: 评论
FunGraph: Functionality Aware 3D Scene Graphs for Language-Prompted Scene Interaction
arXiv
收藏 引用
arXiv 2025年
作者: Rotondi, Dennis Scaparro, Fabio Blum, Hermann Arras, Kai O. Socially Intelligent Robotics Lab Institute for Artificial Intelligence University of Stuttgart Germany Robot Perception and Learning Lab LAMARR Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
The concept of 3D scene graphs is increasingly recognized as a powerful semantic and hierarchical representation of the environment. Current approaches often address this at a coarse, object-level resolution. In contr... 详细信息
来源: 评论
Not Only Rewards But Also Constraints: Applications on Legged Robot Locomotion
arXiv
收藏 引用
arXiv 2023年
作者: Kim, Yunho Oh, Hyunsik Lee, Jeonghyun Choi, Jinhyeok Ji, Gwanghyeon Jung, Moonkyu Youm, Donghoon Hwangbo, Jemin Robotics and Artificial Intelligence Lab KAIST Daejeon Korea Republic of
Several earlier studies have shown impressive control performance in complex robotic systems by designing the controller using a neural network and training it with model-free reinforcement learning. However, these ou... 详细信息
来源: 评论
SAMPLE EFFICIENT DEEP REINFORCEMENT LEARNING VIA UNCERTAINTY ESTIMATION  10
SAMPLE EFFICIENT DEEP REINFORCEMENT LEARNING VIA UNCERTAINTY...
收藏 引用
10th International Conference on Learning Representations, ICLR 2022
作者: Mai, Vincent Mani, Kaustubh Paull, Liam Robotics and Embodied AI Lab Mila - Quebec Institute of Artificial Intelligence Université de Montréal QC Canada
In model-free deep reinforcement learning (RL) algorithms, using noisy value estimates to supervise policy evaluation and optimization is detrimental to the sample efficiency. As this noise is heteroscedastic, its eff... 详细信息
来源: 评论
Interactive Expressive Motion Generation Using Dynamic Movement Primitives
arXiv
收藏 引用
arXiv 2025年
作者: Hielscher, Till Bulling, Andreas Arras, Kai O. Socially Intelligent Robotics Lab Institute for Artificial Intelligence University of Stuttgart Germany Collaborative Artificial Intelligence Group Institute for Visualization and Interactive Systems University of Stuttgart Germany
Our goal is to enable social robots to interact autonomously with humans in a realistic, engaging, and expressive manner. The 12 Principles of Animation [1] are a well-established framework animators use to create mov... 详细信息
来源: 评论
Learning Semantic Traversability with Egocentric Video and Automated Annotation Strategy
arXiv
收藏 引用
arXiv 2024年
作者: Kim, Yunho Lee, Jeong Hyun Lee, Choongin Mun, Juhyeok Youm, Donghoon Park, Jeongsoo Hwangbo, Jemin Robotics and Artificial Intelligence Lab KAIST Daejeon Korea Republic of Neuromeka Seoul Korea Republic of
For reliable autonomous robot navigation in urban settings, the robot must have the ability to identify semantically traversable terrains in the image based on the semantic understanding of the scene. This reasoning a... 详细信息
来源: 评论
Human-like Social Learning for Social Robots: A Systematic Review
Human-like Social Learning for Social Robots: A Systematic R...
收藏 引用
IEEE International Workshop on Robot and Human Communication (ROMAN)
作者: Diana Burkart Barbara Bruno Socially Assistive Robotics With Artificial Intelligence (SARAI) Lab Karlsruhe Institute of Technology (KIT) Germany
Social learning is a learning paradigm aiming to make the process of teaching new skills to an artificial intelligent agent (such as a robot) as close as possible to the process we employ when teaching skills to other... 详细信息
来源: 评论
Practical Considerations for Discrete-Time Implementations of Continuous-Time Control Barrier Function-Based Safety Filters
Practical Considerations for Discrete-Time Implementations o...
收藏 引用
American Control Conference (ACC)
作者: Lukas Brunke Siqi Zhou Mingxuan Che Angela P. Schoellig Learning Systems and Robotics Lab Technical University of Munich Germany University of Toronto Canada Munich Institute of Robotics and Machine Intelligence (MIRMI) the University of Toronto Robotics Institute and the Vector Institute for Artificial Intelligence
Safety filters based on control barrier functions (CBFs) have become a popular method to guarantee safety for uncertified control policies, e.g., as resulting from reinforcement learning. Here, safety is defined as st... 详细信息
来源: 评论
ForestLPR: LiDAR Place Recognition in Forests Attentioning Multiple BEV Density Images
arXiv
收藏 引用
arXiv 2025年
作者: Shen, Yanqing Tuna, Turcan Hutter, Marco Cadena, Cesar Zheng, Nanning Institute of Artificial Intelligence and Robotics Xi’an Jiaotong University China Robotic Systems Lab ETH Zurich Switzerland
Place recognition is essential to maintain global consistency in large-scale localization systems. While research in urban environments has progressed significantly using LiDARs or cameras, applications in natural for... 详细信息
来源: 评论