咨询与建议

限定检索结果

文献类型

  • 621 篇 期刊文献
  • 391 篇 会议
  • 5 册 图书

馆藏范围

  • 1,017 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 698 篇 工学
    • 500 篇 计算机科学与技术...
    • 430 篇 软件工程
    • 144 篇 生物工程
    • 139 篇 信息与通信工程
    • 116 篇 光学工程
    • 112 篇 生物医学工程(可授...
    • 77 篇 控制科学与工程
    • 67 篇 电气工程
    • 61 篇 电子科学与技术(可...
    • 41 篇 机械工程
    • 40 篇 化学工程与技术
    • 23 篇 土木工程
    • 21 篇 建筑学
    • 21 篇 交通运输工程
    • 17 篇 安全科学与工程
    • 15 篇 仪器科学与技术
  • 408 篇 理学
    • 176 篇 数学
    • 156 篇 生物学
    • 138 篇 物理学
    • 64 篇 统计学(可授理学、...
    • 42 篇 化学
    • 39 篇 系统科学
  • 191 篇 管理学
    • 114 篇 图书情报与档案管...
    • 83 篇 管理科学与工程(可...
    • 39 篇 工商管理
  • 91 篇 医学
    • 78 篇 临床医学
    • 70 篇 基础医学(可授医学...
    • 45 篇 药学(可授医学、理...
    • 32 篇 公共卫生与预防医...
  • 26 篇 法学
    • 22 篇 社会学
  • 11 篇 经济学
  • 10 篇 教育学
  • 10 篇 农学
  • 2 篇 军事学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 33 篇 semantics
  • 31 篇 deep learning
  • 29 篇 machine learning
  • 28 篇 training
  • 24 篇 computer vision
  • 22 篇 computational mo...
  • 22 篇 feature extracti...
  • 17 篇 deep neural netw...
  • 17 篇 neural networks
  • 14 篇 image segmentati...
  • 14 篇 artificial intel...
  • 13 篇 reinforcement le...
  • 12 篇 generative adver...
  • 12 篇 convolution
  • 12 篇 visualization
  • 12 篇 biological syste...
  • 11 篇 forecasting
  • 10 篇 three-dimensiona...
  • 10 篇 optimization
  • 10 篇 predictive model...

机构

  • 34 篇 shanghai artific...
  • 21 篇 siat branch shen...
  • 19 篇 university of ch...
  • 17 篇 yonsei frontier ...
  • 15 篇 sensetime resear...
  • 15 篇 moe key lab of a...
  • 14 篇 university of sc...
  • 14 篇 shenzhen key lab...
  • 14 篇 department of co...
  • 13 篇 school of artifi...
  • 12 篇 shenzhen key lab...
  • 12 篇 zhejiang lab
  • 11 篇 shanghai jiao to...
  • 10 篇 institute for ar...
  • 10 篇 microsoft resear...
  • 10 篇 beijing national...
  • 10 篇 tencent ai lab
  • 10 篇 college of compu...
  • 10 篇 shenzhen researc...
  • 9 篇 department of co...

作者

  • 29 篇 huang minlie
  • 26 篇 qiao yu
  • 21 篇 mirjalili seyeda...
  • 19 篇 timofte radu
  • 17 篇 chen chen
  • 15 篇 sun maosong
  • 15 篇 liu zhiyuan
  • 14 篇 liu yang
  • 13 篇 longo luca
  • 13 篇 wang yali
  • 12 篇 wang shuai
  • 11 篇 rashid tarik a.
  • 11 篇 dong chao
  • 11 篇 zhu xiaoyan
  • 10 篇 bakas spyridon
  • 10 篇 nair madhu s.
  • 10 篇 yu qiao
  • 9 篇 libin pieter
  • 9 篇 yu kai
  • 9 篇 xia gui-song

语言

  • 773 篇 英文
  • 237 篇 其他
  • 8 篇 中文
  • 1 篇 德文
检索条件"机构=Artificial intelligence and Computer Vision Research Lab"
1017 条 记 录,以下是11-20 订阅
排序:
How Good is Google Bard's Visual Understanding? An Empirical Study on Open Challenges
收藏 引用
Machine intelligence research 2023年 第5期20卷 605-613页
作者: Haotong Qin Ge-Peng Ji Salman Khan Deng-Ping Fan Fahad Shahbaz Khan Luc Van Gool Computer Vision Lab(CVL) ETH ZurichZurich 8001Switzerland College of Engineering Computing&CyberneticsAustralian National UniversityCanberra 8105Australia Mohamed bin Zayed University of Artificial Intelligence Abu Dhabi 999041UAE
Google's Bard has emerged as a formidable competitor to OpenAI's ChatGPT in the field of conversational ***,Bard has recently been updated to handle visual inputs alongside text prompts during *** Bard's i... 详细信息
来源: 评论
Development of a Hand Gesture Recognition Model Capable of Online Readjustment Using EMGs and Double Deep-Q Networks  1
收藏 引用
International Conference on Information Technology and Systems, ICITS 2023
作者: Díaz, Danny Benalcázar, Marco E. Barona, Lorena Valdivieso, Ángel Leonardo Artificial Intelligence and Computer Vision Research Lab Departamento de Informática y Ciencias de la Computación Escuela Politécnica Nacional Quito Ecuador
Hand Gesture Recognition (HGR) has enabled the development of alternative forms of human-machine interaction in recent years. HGR models based on supervised learning have been developed with high accuracy. However, ov... 详细信息
来源: 评论
Face to Cartoon Incremental Super-Resolution Using Knowledge Distillation  27th
Face to Cartoon Incremental Super-Resolution Using Knowledg...
收藏 引用
27th International Conference on Pattern Recognition, ICPR 2024
作者: Devkatte, Trinetra Dubey, Shiv Ram Singh, Satish Kumar Hadid, Abdenour Computer Vision and Biometrics Lab Indian Institute of Information Technology Allahabad Allahabad India Sorbonne Centre for Artificial Intelligence Sorbonne University Abu Dhabi Abu Dhabi United Arab Emirates
Facial super-resolution/hallucination is an important area of research that seeks to enhance low-resolution facial images for a variety of applications. While Generative Adversarial Networks (GANs) have show... 详细信息
来源: 评论
ClickDiff: Click to Induce Semantic Contact Map for Controllable Grasp Generation with Diffusion Models  24
ClickDiff: Click to Induce Semantic Contact Map for Controll...
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Li, Peiming Wang, Ziyi Liu, Mengyuan Liu, Hong Chen, Chen State Key Laboratory of General Artificial Intelligence Peking University Shenzhen Graduate School Shenzhen China Center for Research in Computer Vision University of Central Florida Orlando United States
Grasp generation aims to create complex hand-object interactions with a specified object. While traditional approaches for hand generation have primarily focused on visibility and diversity under scene constraints, th... 详细信息
来源: 评论
Explaining Deep Learning Time Series Classification Models using a Decision Tree-Based Post-Hoc XAI Method  1
Explaining Deep Learning Time Series Classification Models u...
收藏 引用
Joint 1st World Conference on eXplainable artificial intelligence: Late-Breaking Work, Demos and Doctoral Consortium, xAI-2023: LB-D-DC
作者: Mekonnen, Ephrem T. Dondio, Pierpaolo Longo, Luca Artificial Intelligence and Cognitive Load Research Lab Ireland School of Computer Science Technological University Dublin Ireland
This preliminary study proposes a new post hoc method to explain deep learning-based time series classification models using a decision tree. Our approach generates a decision tree graph or rulesets as an explanation,... 详细信息
来源: 评论
An examination of the effect of the inconsistency budget in weighted argumentation frameworks and their impact on the interpretation of deep neural networks  1
An examination of the effect of the inconsistency budget in ...
收藏 引用
Joint 1st World Conference on eXplainable artificial intelligence: Late-Breaking Work, Demos and Doctoral Consortium, xAI-2023: LB-D-DC
作者: Vilone, Giulia Longo, Luca Artificial Intelligence and Cognitive Load Research Lab Ireland School of Computer Science Technological University Dublin Ireland
Explaining the logic of a data-driven Machine Learning (ML) model can be seen as a defeasible reasoning process that is likely non-monotonic. This means a conclusion linked to a set of premises can be withdrawn when n... 详细信息
来源: 评论
Optimizing Deep Q-Learning Experience Replay with SHAP Explanations: Exploring Minimum Experience Replay Buffer Sizes in Reinforcement Learning  1
Optimizing Deep Q-Learning Experience Replay with SHAP Expla...
收藏 引用
Joint 1st World Conference on eXplainable artificial intelligence: Late-Breaking Work, Demos and Doctoral Consortium, xAI-2023: LB-D-DC
作者: Sullivan, Robert S. Longo, Luca Artificial Intelligence and Cognitive Load Research Lab Ireland School of Computer Science Technological University Dublin Ireland
Explainable Reinforcement Learning (xRL) faces challenges in debugging and interpreting Deep Reinforcement Learning (DRL) models. A lack of understanding for internal components like Experience Replay, which samples a... 详细信息
来源: 评论
Latent space interpretation and visualisation for understanding the decisions of convolutional variational autoencoders trained with EEG topographic maps  1
Latent space interpretation and visualisation for understand...
收藏 引用
Joint 1st World Conference on eXplainable artificial intelligence: Late-Breaking Work, Demos and Doctoral Consortium, xAI-2023: LB-D-DC
作者: Ahmed, Taufique Longo, Luca Artificial Intelligence and Cognitive Load Research Lab Ireland School of Computer Science Technological University Dublin Ireland
Learning essential features and forming simple representations of electroencephalography (EEG) signals are difficult problems. Variational autoencoders (VAEs) can be used with EEG signals to learn the salient features... 详细信息
来源: 评论
Multi-Modality Co-Learning for Efficient Skeleton-based Action Recognition  24
Multi-Modality Co-Learning for Efficient Skeleton-based Acti...
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Liu, Jinfu Chen, Chen Liu, Mengyuan State Key Laboratory of General Artificial Intelligence Peking University Shenzhen Graduate School Shenzhen China Center for Research in Computer Vision University of Central Florida OrlandoFL United States
Skeleton-based action recognition has garnered significant attention due to the utilization of concise and resilient skeletons. Nevertheless, the absence of detailed body information in skeletons restricts performance... 详细信息
来源: 评论
Interpreting Black-Box Time Series Classifiers using Parameterised Event Primitives  2
Interpreting Black-Box Time Series Classifiers using Paramet...
收藏 引用
Joint of the 2nd World Conference on eXplainable artificial intelligence Late-Breaking Work, Demos and Doctoral Consortium, xAI-2024:LB/D/DC
作者: Mekonnen, Ephrem T. Longo, Luca Dondio, Pierpaolo School of Computer Science Technological University Dublin Ireland Artificial Intelligence and Cognitive Load Research Lab. Technological University Dublin Ireland
Amidst the remarkable performance of deep learning models in time series classification, there is a pressing demand for methods that unveil their prediction rationale. Existing feature importance techniques often negl... 详细信息
来源: 评论