咨询与建议

限定检索结果

文献类型

  • 81 篇 会议
  • 23 篇 期刊文献

馆藏范围

  • 104 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 63 篇 工学
    • 25 篇 信息与通信工程
    • 20 篇 计算机科学与技术...
    • 17 篇 电子科学与技术(可...
    • 17 篇 软件工程
    • 11 篇 仪器科学与技术
    • 11 篇 电气工程
    • 9 篇 船舶与海洋工程
    • 7 篇 控制科学与工程
    • 5 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 机械工程
    • 3 篇 化学工程与技术
    • 2 篇 土木工程
    • 2 篇 纺织科学与工程
    • 1 篇 光学工程
    • 1 篇 建筑学
    • 1 篇 交通运输工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 生物医学工程(可授...
    • 1 篇 安全科学与工程
  • 57 篇 理学
    • 45 篇 物理学
    • 21 篇 数学
    • 8 篇 生物学
    • 7 篇 系统科学
    • 5 篇 统计学(可授理学、...
    • 1 篇 化学
  • 8 篇 法学
    • 8 篇 社会学
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...

主题

  • 14 篇 speech enhanceme...
  • 7 篇 training
  • 6 篇 digital filters
  • 6 篇 speech coding
  • 6 篇 signal processin...
  • 5 篇 speech
  • 5 篇 speech processin...
  • 4 篇 noise reduction
  • 4 篇 noise measuremen...
  • 4 篇 signal processin...
  • 4 篇 acoustic signal ...
  • 4 篇 testing
  • 4 篇 interpolation
  • 4 篇 digital signal p...
  • 4 篇 speech analysis
  • 3 篇 reverberation
  • 3 篇 filtering
  • 3 篇 acoustics
  • 3 篇 convolution
  • 3 篇 laboratories

机构

  • 11 篇 speech and audio...
  • 9 篇 tencent ai lab a...
  • 7 篇 lab. of acoustic...
  • 6 篇 shenzhen interna...
  • 5 篇 speech and audio...
  • 4 篇 international au...
  • 4 篇 speech and audio...
  • 4 篇 the chinese univ...
  • 3 篇 lab. of acoustic...
  • 3 篇 laboratory of ac...
  • 3 篇 speech and audio...
  • 3 篇 nokia siemens ne...
  • 3 篇 computer enginee...
  • 2 篇 acoustics lab de...
  • 2 篇 computing and au...
  • 2 篇 fraunhofer idmt ...
  • 2 篇 wolfsound katowi...
  • 2 篇 nokia res. ctr. ...
  • 2 篇 acoustics lab de...
  • 2 篇 laboratory of ac...

作者

  • 14 篇 välimäki vesa
  • 9 篇 changchun bao
  • 8 篇 chang-chun bao
  • 8 篇 chen hangting
  • 6 篇 alku paavo
  • 6 篇 bao changchun
  • 5 篇 weng chao
  • 5 篇 bao chang-chun
  • 5 篇 yu jianwei
  • 4 篇 yang dongchao
  • 4 篇 wang yuanyuan
  • 4 篇 m. karjalainen
  • 4 篇 hangting chen
  • 4 篇 matti karjalaine...
  • 4 篇 karjalainen matt...
  • 4 篇 wu zhiyong
  • 3 篇 jianwei yu
  • 3 篇 v. valimaki
  • 3 篇 gu rongzhi
  • 3 篇 wu xixin

语言

  • 103 篇 英文
  • 1 篇 其他
检索条件"机构=Audio and Signal Processing Lab"
104 条 记 录,以下是1-10 订阅
排序:
TSpeech-AI System Description to the 5th Deep Noise Suppression (DNS) Challenge  48
TSpeech-AI System Description to the 5th Deep Noise Suppress...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and signal processing, ICASSP 2023
作者: Yu, Jianwei Chen, Hangting Luo, Yi Gu, Rongzhi Li, Weihua Weng, Chao Audio and Speech Signal Processing Oteam Tencent Ai Lab China
This report presents the development of Tencent AI lab's personalized speech enhancement system for the 2023 ICASSP signal processing Grand Challenge - deep noise suppression (DNS) challenge1, which includes the u... 详细信息
来源: 评论
Complexity Scaling for Speech Denoising
Complexity Scaling for Speech Denoising
收藏 引用
International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Hangting Chen Jianwei Yu Chao Weng Tencent AI Lab Audio and Speech Signal Processing Oteam
Computational complexity is critical when deploying deep learning-based speech denoising models for on-device applications. Most prior research focused on optimizing model architectures to meet specific computational ...
来源: 评论
Neural Optimization of Geometry and Fixed Beamformer for Linear Microphone Arrays  48
Neural Optimization of Geometry and Fixed Beamformer for Lin...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and signal processing, ICASSP 2023
作者: Yan, Longfei Huang, Weilong Kleijn, W. Bastiaan Abhayapala, Thushara D. Victoria University of Wellington School of Engineering and Computer Science New Zealand Australian National University Audio & Acoustic Signal Processing Group Australia Alibaba Group DingTalk Hummingbird Audio Lab China
Fixed beamforming based on uniform linear microphone arrays often suffers from non-optimal performance for broadband signals. This paper addresses the issue by jointly optimizing the array geometry and spatial filters... 详细信息
来源: 评论
audioComposer: Towards Fine-grained audio Generation with Natural Language Descriptions
AudioComposer: Towards Fine-grained Audio Generation with Na...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and signal processing, ICASSP 2025
作者: Wang, Yuanyuan Chen, Hangting Yang, Dongchao Wu, Zhiyong Wu, Xixin The Chinese University of Hong Kong Hong Kong Tencent AI Lab Audio and Speech Signal Processing Oteam China Shenzhen International Graduate School Tsinghua University Shenzhen China
Current Text-to-audio (TTA) models mainly use coarse text descriptions as inputs to generate audio, which hinders models from generating audio with fine-grained control of content and style. Some studies try to improv... 详细信息
来源: 评论
TSpeech-AI System Description to the 5th Deep Noise Suppression (DNS) Challenge
TSpeech-AI System Description to the 5th Deep Noise Suppress...
收藏 引用
International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Jianwei Yu Hangting Chen Yi Luo Rongzhi Gu Weihua Li Chao Weng Tencent AI Lab Audio and Speech Signal Processing Oteam
This report presents the development of Tencent AI lab’s personalized speech enhancement system for the 2023 ICASSP signal processing Grand Challenge – deep noise suppression (DNS) challenge 1 , which includes the u... 详细信息
来源: 评论
Ultra Dual-Path Compression For Joint Echo Cancellation And Noise Suppression
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Hangting Yu, Jianwei Luo, Yi Gu, Rongzhi Li, Weihua Lu, Zhuocheng Weng, Chao Tencent AI Lab Audio and Speech Signal Processing Oteam
Echo cancellation and noise reduction are essential for full-duplex communication, yet most existing neural networks have high computational costs and are inflexible in tuning model complexity. In this paper, we intro... 详细信息
来源: 评论
COMPLEXITY SCALING FOR SPEECH DENOISING
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Hangting Yu, Jianwei Weng, Chao Tencent AI Lab Audio and Speech Signal Processing Oteam
Computational complexity is critical when deploying deep learning-based speech denoising models for on-device applications. Most prior research focused on optimizing model architectures to meet specific computational ... 详细信息
来源: 评论
A Multi-Noise Multi-Channel ANC System using Relative Transfer Matrix-Based Approach
A Multi-Noise Multi-Channel ANC System using Relative Transf...
收藏 引用
International Workshop on Acoustic signal Enhancement (IWAENC)
作者: Yile Angela Zhang Thushara D. Abhayapala Huiyuan Sun Prasanga N. Samarasinghe Amy Bastine Audio and Acoustic Signal Processing Group The Australian National University Australia Computing and Audio Research Lab The University of Sydney NSW Australia
Remote microphone-based virtual sensing (RM-VS) methods are used in active noise control (ANC) systems to avoid the physical presence of microphones inside the region of interest (ROI). Conventionally, this is achieve... 详细信息
来源: 评论
Active Noise Control Over 3D Space with A Dynamic Noise Source
Active Noise Control Over 3D Space with A Dynamic Noise Sour...
收藏 引用
International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Huiyuan Sun Craig T. Jin Thushara Abhayapala Prasanga Samarasinghe Audio & Acoustic Signal Processing Group The Australian National University ACT Australia Computing and Audio Research Lab The University of Sydney NSW Australia
Spatial Active noise control (ANC) systems are proposed to minimize the noise over a spatial region of interest around people’s heads by generating an anti-noise field with multiple microphones and loudspeakers. Rece...
来源: 评论
VIRTUAL ANALOG MODELING OF DISTORTION CIRCUITS USING NEURAL ORDINARY DIFFERENTIAL EQUATIONS  25
VIRTUAL ANALOG MODELING OF DISTORTION CIRCUITS USING NEURAL ...
收藏 引用
25th International Conference on Digital audio Effects, DAFx 2022
作者: Wilczek, Jan Wright, Alec Välimäki, Vesa Habets, Emanuël A.P. WolfSound Katowice Poland Acoustics Lab Dept. Signal Processing and Acoustics Aalto University Espoo Finland International Audio Laboratories Erlangen Erlangen Germany
Recent research in deep learning has shown that neural networks can learn differential equations governing dynamical systems. In this paper, we adapt this concept to Virtual Analog (VA) modeling to learn the ordinary ... 详细信息
来源: 评论