咨询与建议

限定检索结果

文献类型

  • 81 篇 会议
  • 23 篇 期刊文献

馆藏范围

  • 104 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 63 篇 工学
    • 25 篇 信息与通信工程
    • 20 篇 计算机科学与技术...
    • 17 篇 电子科学与技术(可...
    • 17 篇 软件工程
    • 11 篇 仪器科学与技术
    • 11 篇 电气工程
    • 9 篇 船舶与海洋工程
    • 7 篇 控制科学与工程
    • 5 篇 生物工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 机械工程
    • 3 篇 化学工程与技术
    • 2 篇 土木工程
    • 2 篇 纺织科学与工程
    • 1 篇 光学工程
    • 1 篇 建筑学
    • 1 篇 交通运输工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 生物医学工程(可授...
    • 1 篇 安全科学与工程
  • 57 篇 理学
    • 45 篇 物理学
    • 21 篇 数学
    • 8 篇 生物学
    • 7 篇 系统科学
    • 5 篇 统计学(可授理学、...
    • 1 篇 化学
  • 8 篇 法学
    • 8 篇 社会学
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...

主题

  • 14 篇 speech enhanceme...
  • 7 篇 training
  • 6 篇 digital filters
  • 6 篇 speech coding
  • 6 篇 signal processin...
  • 5 篇 speech
  • 5 篇 speech processin...
  • 4 篇 noise reduction
  • 4 篇 noise measuremen...
  • 4 篇 signal processin...
  • 4 篇 acoustic signal ...
  • 4 篇 testing
  • 4 篇 interpolation
  • 4 篇 digital signal p...
  • 4 篇 speech analysis
  • 3 篇 reverberation
  • 3 篇 filtering
  • 3 篇 acoustics
  • 3 篇 convolution
  • 3 篇 laboratories

机构

  • 11 篇 speech and audio...
  • 9 篇 tencent ai lab a...
  • 7 篇 lab. of acoustic...
  • 6 篇 shenzhen interna...
  • 5 篇 speech and audio...
  • 4 篇 international au...
  • 4 篇 speech and audio...
  • 4 篇 the chinese univ...
  • 3 篇 lab. of acoustic...
  • 3 篇 laboratory of ac...
  • 3 篇 speech and audio...
  • 3 篇 nokia siemens ne...
  • 3 篇 computer enginee...
  • 2 篇 acoustics lab de...
  • 2 篇 computing and au...
  • 2 篇 fraunhofer idmt ...
  • 2 篇 wolfsound katowi...
  • 2 篇 nokia res. ctr. ...
  • 2 篇 acoustics lab de...
  • 2 篇 laboratory of ac...

作者

  • 14 篇 välimäki vesa
  • 9 篇 changchun bao
  • 8 篇 chang-chun bao
  • 8 篇 chen hangting
  • 6 篇 alku paavo
  • 6 篇 bao changchun
  • 5 篇 weng chao
  • 5 篇 bao chang-chun
  • 5 篇 yu jianwei
  • 4 篇 yang dongchao
  • 4 篇 wang yuanyuan
  • 4 篇 m. karjalainen
  • 4 篇 hangting chen
  • 4 篇 matti karjalaine...
  • 4 篇 karjalainen matt...
  • 4 篇 wu zhiyong
  • 3 篇 jianwei yu
  • 3 篇 v. valimaki
  • 3 篇 gu rongzhi
  • 3 篇 wu xixin

语言

  • 103 篇 英文
  • 1 篇 其他
检索条件"机构=Audio and Signal Processing Lab"
104 条 记 录,以下是11-20 订阅
排序:
Neural Optimization Of Geometry And Fixed Beamformer For Linear Microphone Arrays
Neural Optimization Of Geometry And Fixed Beamformer For Lin...
收藏 引用
International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Longfei Yan Weilong Huang W. Bastiaan Kleijn Thushara D. Abhayapala School of Engineering and Computer Science Victoria University of Wellington Audio & Acoustic Signal Processing Group Australian National University DingTalk Hummingbird Audio Lab Alibaba Group
Fixed beamforming based on uniform linear microphone arrays often suffers from non-optimal performance for broadband signals. This paper addresses the issue by jointly optimizing the array geometry and spatial filters... 详细信息
来源: 评论
High Fidelity Speech Enhancement with Band-split RNN
arXiv
收藏 引用
arXiv 2022年
作者: Yu, Jianwei Chen, Hangting Luo, Yi Gu, Rongzhi Weng, Chao Tencent AI Lab Audio and Speech Signal Processing Oteam United States
Despite the rapid progress in speech enhancement (SE) research, improving the intelligibility and perceptual quality of desired speech in noisy environments with interfering speakers remains challenging. This paper at... 详细信息
来源: 评论
An NMF-based MMSE Approach for Single Channel Speech Enhancement Using Densely Connected Convolutional Network
An NMF-based MMSE Approach for Single Channel Speech Enhance...
收藏 引用
2021 IEEE International Conference on signal processing, Communications and Computing, ICSPCC 2021
作者: Li, Xinyu Bao, Changchun Cui, Zihao Beijing University of Technology Speech and Audio Signal Processing Lab. Faculty of Information Technology Beijing100124 China
Presently, because of the development of deep learning technology, there has been increasingly more attention on state-of-The-Art masking and mapping based speech enhancement methods. However, traditional speech enhan... 详细信息
来源: 评论
audioComposer: Towards Fine-grained audio Generation with Natural Language Descriptions
AudioComposer: Towards Fine-grained Audio Generation with Na...
收藏 引用
International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Yuanyuan Wang Hangting Chen Dongchao Yang Zhiyong Wu Xixin Wu The Chinese University of Hong Kong Hong Kong SAR China Tencent AI Lab Audio and Speech Signal Processing Oteam China Shenzhen International Graduate School Tsinghua University Shenzhen China
Current Text-to-audio (TTA) models mainly use coarse text descriptions as inputs to generate audio, which hinders models from generating audio with fine-grained control of content and style. Some studies try to improv... 详细信息
来源: 评论
audioComposer: Towards Fine-grained audio Generation with Natural Language Descriptions
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Yuanyuan Chen, Hangting Yang, Dongchao Wu, Zhiyong Meng, Helen Wu, Xixin The Chinese University of Hong Kong Hong Kong Tencent AI Lab. Audio and Speech Signal Processing Oteam China Shenzhen International Graduate School Tsinghua University Shenzhen China
Current Text-to-audio (TTA) models mainly use coarsetext descriptions as inputs to generate audio, which hinders models from generating audio with fine-grained control of content and style. Some studies try to improve... 详细信息
来源: 评论
Consistent and Relevant: Rethink the Query Embedding in General Sound Separation
Consistent and Relevant: Rethink the Query Embedding in Gene...
收藏 引用
International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Yuanyuan Wang Hangting Chen Dongchao Yang Jianwei Yu Chao Weng Zhiyong Wu Helen Meng Shenzhen International Graduate School Tsinghua University Shenzhen China Tencent AI Lab Audio and Speech Signal Processing Oteam China The Chinese University of Hong Kong Hong Kong SAR China
The query-based audio separation usually employs specific queries to extract target sources from a mixture of audio signals. Currently, most query-based separation models need additional networks to obtain query embed...
来源: 评论
Exploring Receptance Weighted Key Value Model for Single-Channel Speech Enhancement
Exploring Receptance Weighted Key Value Model for Single-Cha...
收藏 引用
IEEE International Conference on Information Communication and signal processing (ICICSP)
作者: Yuanle Li Yi Zhou Hongqing Liu School of Communications and Information Engineering Chongqing University of Posts and Telecommunications Chongqing China Chongqing Key Laboratory of Signal and Information Processing CQUPT Chongqing China Intelligent Speech and Audio Research Lab (ISARL) CQUPT Chongqing China
Speech enhancement has significantly benefited from advancements in deep learning, particularly in terms of intelligibility and perceptual quality. Traditional time-frequency (TF) domain methods rely on convolutional ... 详细信息
来源: 评论
CONSISTENT AND RELEVANT: RETHINK THE QUERY EMBEDDING IN GENERAL SOUND SEPARATION
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Yuanyuan Chen, Hangting Yang, Dongchao Yu, Jianwei Weng, Chao Wu, Zhiyong Meng, Helen Shenzhen International Graduate School Tsinghua University Shenzhen China Tencent AI Lab Audio and Speech Signal Processing Oteam China The Chinese University of Hong Kong Hong Kong
The query-based audio separation usually employs specific queries to extract target sources from a mixture of audio signals. Currently, most query-based separation models need additional networks to obtain query embed... 详细信息
来源: 评论
VIRTUAL ANALOG MODELING OF DISTORTION CIRCUITS USING NEURAL ORDINARY DIFFERENTIAL EQUATIONS
arXiv
收藏 引用
arXiv 2022年
作者: Wilczek, Jan Wright, Alec Välimäki, Vesa Habets, Emanuël A.P. WolfSound Katowice Poland Acoustics Lab Dept. Signal Processing and Acoustics Aalto University Espoo Finland International Audio Laboratories Erlangen Erlangen Germany
Recent research in deep learning has shown that neural networks can learn differential equations governing dynamical systems. In this paper, we adapt this concept to Virtual Analog (VA) modeling to learn the ordinary ... 详细信息
来源: 评论
UniSep: Universal Target audio Separation with Language Models at Scale
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Yuanyuan Chen, Hangting Yang, Dongchao Li, Weiqin Luo, Dan Li, Guangzhi Yang, Shan Wu, Zhiyong Meng, Helen Wu, Xixin The Chinese University of Hong Kong Hong Kong Tencent AI Lab Audio and Speech Signal Processing Oteam China Shenzhen International Graduate School Tsinghua University Shenzhen China
We propose Universal target audio Separation (UniSep), addressing the separation task on arbitrary mixtures of different types of audio. Distinguished from previous studies, UniSep is performed on unlimited source dom... 详细信息
来源: 评论