咨询与建议

限定检索结果

文献类型

  • 42 篇 会议
  • 30 篇 期刊文献

馆藏范围

  • 72 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 40 篇 工学
    • 30 篇 计算机科学与技术...
    • 27 篇 软件工程
    • 7 篇 机械工程
    • 6 篇 信息与通信工程
    • 6 篇 生物工程
    • 5 篇 电气工程
    • 5 篇 化学工程与技术
    • 4 篇 生物医学工程(可授...
    • 3 篇 控制科学与工程
    • 2 篇 光学工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 航空宇航科学与技...
    • 1 篇 冶金工程
    • 1 篇 动力工程及工程热...
    • 1 篇 土木工程
    • 1 篇 安全科学与工程
  • 24 篇 理学
    • 11 篇 数学
    • 7 篇 生物学
    • 5 篇 化学
    • 5 篇 统计学(可授理学、...
    • 4 篇 物理学
    • 3 篇 系统科学
    • 2 篇 大气科学
  • 12 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 2 篇 医学
    • 2 篇 临床医学
    • 1 篇 基础医学(可授医学...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 6 篇 training
  • 5 篇 reinforcement le...
  • 4 篇 machine learning
  • 3 篇 three-dimensiona...
  • 3 篇 accuracy
  • 3 篇 service robots
  • 3 篇 adaptation model...
  • 2 篇 object detection
  • 2 篇 learning systems
  • 2 篇 image segmentati...
  • 2 篇 systematics
  • 2 篇 drones
  • 2 篇 industrial robot...
  • 2 篇 manipulators
  • 2 篇 visualization
  • 2 篇 semantics
  • 2 篇 benchmarking
  • 2 篇 time series anal...
  • 2 篇 manufacturing
  • 2 篇 computer vision

机构

  • 16 篇 department of au...
  • 10 篇 south westphalia...
  • 9 篇 automation techn...
  • 3 篇 school of cybers...
  • 3 篇 department of sy...
  • 3 篇 department of au...
  • 2 篇 shanghai jiao to...
  • 2 篇 department of au...
  • 2 篇 heinz college of...
  • 2 篇 department of ar...
  • 2 篇 school of artifi...
  • 2 篇 artificial intel...
  • 2 篇 department of co...
  • 2 篇 school of system...
  • 1 篇 department of ps...
  • 1 篇 electrical engin...
  • 1 篇 institute for au...
  • 1 篇 the trustworthy ...
  • 1 篇 university of sc...
  • 1 篇 department of ap...

作者

  • 21 篇 schwung andreas
  • 20 篇 andreas schwung
  • 7 篇 marlon löppenber...
  • 6 篇 steve yuwono
  • 5 篇 yuwono steve
  • 5 篇 hendrik klopries
  • 4 篇 mochammad rizky ...
  • 4 篇 altinses diyar
  • 4 篇 klopries hendrik
  • 4 篇 diyar altinses
  • 4 篇 löppenberg marlo...
  • 3 篇 schwung dorothea
  • 2 篇 zhu yanqiao
  • 2 篇 yu jeffrey xu
  • 2 篇 wang liang
  • 2 篇 pöppelbaum johan...
  • 2 篇 luo yingtao
  • 2 篇 david orlando sa...
  • 2 篇 chen dingshuo
  • 2 篇 li zhixun

语言

  • 53 篇 英文
  • 19 篇 其他
检索条件"机构=Automation Technology and Learning Systems"
72 条 记 录,以下是1-10 订阅
排序:
Structured Graph Generation by Evolutionary Algorithm for Program Code Development  50
Structured Graph Generation by Evolutionary Algorithm for Pr...
收藏 引用
50th Annual Conference of the IEEE Industrial Electronics Society, IECON 2024
作者: Löppenberg, Marlon Schwung, Andreas Automation Technology and Learning Systems South Westphalia University of Applied Sciences Soest Germany
Understanding and interpreting complex coupled systems remains one of the biggest challenges in the world. Examples of these applications range from industrial manufacturing to the temporal characteristics of real-wor... 详细信息
来源: 评论
Foreign Object Separation in Bulk Good systems Using Machine learning and Image Processing  25
Foreign Object Separation in Bulk Good Systems Using Machine...
收藏 引用
25th IEEE International Conference on Industrial technology, ICIT 2024
作者: Löppenberg, Marlon Klopries, Hendrik Bartsch, Jonas Schwung, Andreas South Westphalia University Of Applied Sciences Automation Technology And Learning Systems Soest Germany
One of the major goals in bulk good systems is to provide high-quality material. Sometimes the bulk good is corrupted by foreign objects, due to insufficient process observations, human mistakes, or unforeseen events.... 详细信息
来源: 评论
Node Reservation Based Incremental learning Network for Object Detection  25
Node Reservation Based Incremental Learning Network for Obje...
收藏 引用
25th IEEE International Conference on Industrial technology, ICIT 2024
作者: Ibrahim, M. Tahasanul Limaye, Nikhil Schwung, Andreas South Westphalia University Of Applied Sciences Department Of Automation Technology And Learning Systems Soest Germany
Object categorization is a crucial element in AI-driven computer vision systems, with its influence spanning from advanced surveillance technologies to basic projects. This field faces a key challenge in strategically... 详细信息
来源: 评论
Sim-to-Real Transfer for Robotics Using Model-Free Curriculum Reinforcement learning  25
Sim-to-Real Transfer for Robotics Using Model-Free Curriculu...
收藏 引用
25th IEEE International Conference on Industrial technology, ICIT 2024
作者: Diprasetya, Mochammad Rizky Pullani, Ali Nafih Schwung, Andreas South Westphalia University Of Applied Sciences Department Of Automation Technology And Learning Systems Soest Germany
In this paper we propose a novel approach for transfer of model-free Reinforcement learning (RL) methods from simulation to a real-world model of a six-link robotic arm for industrial tasks. We develop an alternative ... 详细信息
来源: 评论
Flexible Activation Bag: learning Activation Functions in Autoencoder Networks
Flexible Activation Bag: Learning Activation Functions in Au...
收藏 引用
2023 IEEE International Conference on Industrial technology, ICIT 2023
作者: Klopries, Hendrik Schwung, Andreas South Westphalia University of Applied Sciences Department of Automation Technology and Learning Systems Soest Germany
An active area of research in the field of Machine learning is the optimization of network structures, including activation functions. However, selecting a suitable activation function is not that simple and usually r... 详细信息
来源: 评论
Deep Multimodal Fusion with Corrupted Spatio-Temporal Data Using Fuzzy Regularization  49
Deep Multimodal Fusion with Corrupted Spatio-Temporal Data U...
收藏 引用
49th Annual Conference of the IEEE Industrial Electronics Society, IECON 2023
作者: Altinses, Diyar Schwung, Andreas South Westphalia University of Applied Sciences Department of Automation Technology and Learning Systems Soest Germany
Deep networks have been successfully applied to unsupervised feature learning and supervised classification and regression for unimodal data (e.g., sensors, images, or audio). Multimodal data is often used to improve ... 详细信息
来源: 评论
Bag-of-Functions Denoising: Extracting main components in time series  32
Bag-of-Functions Denoising: Extracting main components in ti...
收藏 引用
32nd IEEE International Symposium on Industrial Electronics, ISIE 2023
作者: Klopries, Hendrik Schwung, Andreas South Westphalia University of Applied Sciences Department of Automation Technology and Learning Systems Soest Germany
Denoising sequences of time series is one of the elementary preprocessing steps in data mining. Current statistical methods work on the univariate input data stream and do not obtain long dependencies over the whole s... 详细信息
来源: 评论
Multimodal Synthetic Dataset Balancing: a Framework for Realistic and Balanced Training Data Generation in Industrial Settings  49
Multimodal Synthetic Dataset Balancing: a Framework for Real...
收藏 引用
49th Annual Conference of the IEEE Industrial Electronics Society, IECON 2023
作者: Altinses, Diyar Schwung, Andreas South Westphalia University of Applied Sciences Department of Automation Technology and Learning Systems Soest Germany
Deep networks have been successfully applied to industrial applications for clean unimodal data (e.g., sensors, images, or audio). Leveraging multimodal data is a common approach to enhance performance, guided by the ... 详细信息
来源: 评论
A Model-Based Deep learning Approach for Self-learning in Smart Production systems  28
A Model-Based Deep Learning Approach for Self-Learning in Sm...
收藏 引用
28th IEEE International Conference on Emerging Technologies and Factory automation, ETFA 2023
作者: Yuwono, Steve Schwung, Andreas South Westphalia University of Applied Sciences Department of Automation Technology and Learning Systems Soest Germany
In this research, we discuss the impact of combining model-based deep learning and game theory in dynamic games to develop a sample-efficient self-learning methodology for smart production systems. We propose a novel ... 详细信息
来源: 评论
Stability-Guaranteed Control systems with Min-Max Constraints and Machine learning-Based Virtual Sensors
Stability-Guaranteed Control Systems with Min-Max Constraint...
收藏 引用
2023 IEEE International Conference on systems, Man, and Cybernetics, SMC 2023
作者: Hilgert, Eric Schwung, Andreas Graduate School for Applied Research in North Rhine-Westphalia Department of Technology and Systems Bochum Germany South Westphalia University of Applied Sciences Department of Automation Technology and Learning Systems Soest Germany
In this paper, we present a comprehensive approach for designing and analyzing control systems with minmax constraint controllers and machine learning-based virtual sensors. By leveraging the Standard Nonlinear Operat...
来源: 评论