咨询与建议

限定检索结果

文献类型

  • 42 篇 会议
  • 33 篇 期刊文献

馆藏范围

  • 75 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 41 篇 工学
    • 30 篇 计算机科学与技术...
    • 27 篇 软件工程
    • 7 篇 机械工程
    • 6 篇 电气工程
    • 6 篇 信息与通信工程
    • 6 篇 生物工程
    • 5 篇 化学工程与技术
    • 4 篇 控制科学与工程
    • 4 篇 生物医学工程(可授...
    • 2 篇 光学工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 航空宇航科学与技...
    • 1 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 动力工程及工程热...
    • 1 篇 土木工程
    • 1 篇 安全科学与工程
  • 25 篇 理学
    • 10 篇 数学
    • 7 篇 生物学
    • 5 篇 化学
    • 4 篇 物理学
    • 4 篇 系统科学
    • 4 篇 统计学(可授理学、...
    • 2 篇 大气科学
  • 12 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 2 篇 医学
    • 2 篇 临床医学
    • 1 篇 基础医学(可授医学...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 6 篇 training
  • 5 篇 reinforcement le...
  • 5 篇 machine learning
  • 3 篇 three-dimensiona...
  • 3 篇 benchmarking
  • 3 篇 accuracy
  • 3 篇 service robots
  • 3 篇 adaptation model...
  • 2 篇 object detection
  • 2 篇 learning systems
  • 2 篇 image segmentati...
  • 2 篇 systematics
  • 2 篇 drones
  • 2 篇 industrial robot...
  • 2 篇 manipulators
  • 2 篇 computational mo...
  • 2 篇 visualization
  • 2 篇 semantics
  • 2 篇 time series anal...
  • 2 篇 manufacturing

机构

  • 17 篇 department of au...
  • 10 篇 south westphalia...
  • 9 篇 automation techn...
  • 3 篇 school of cybers...
  • 3 篇 department of sy...
  • 3 篇 department of au...
  • 2 篇 shanghai jiao to...
  • 2 篇 department of au...
  • 2 篇 heinz college of...
  • 2 篇 department of ar...
  • 2 篇 school of artifi...
  • 2 篇 department of te...
  • 2 篇 artificial intel...
  • 2 篇 department of co...
  • 2 篇 school of system...
  • 1 篇 department of ps...
  • 1 篇 electrical engin...
  • 1 篇 institute for au...
  • 1 篇 the trustworthy ...
  • 1 篇 university of sc...

作者

  • 22 篇 schwung andreas
  • 21 篇 andreas schwung
  • 7 篇 marlon löppenber...
  • 6 篇 steve yuwono
  • 5 篇 yuwono steve
  • 5 篇 diyar altinses
  • 5 篇 hendrik klopries
  • 4 篇 mochammad rizky ...
  • 4 篇 altinses diyar
  • 4 篇 klopries hendrik
  • 4 篇 löppenberg marlo...
  • 3 篇 schwung dorothea
  • 2 篇 zhu yanqiao
  • 2 篇 yu jeffrey xu
  • 2 篇 wang liang
  • 2 篇 pöppelbaum johan...
  • 2 篇 luo yingtao
  • 2 篇 david orlando sa...
  • 2 篇 chen dingshuo
  • 2 篇 li zhixun

语言

  • 48 篇 英文
  • 27 篇 其他
检索条件"机构=Automation Technology and Learning Systems"
75 条 记 录,以下是31-40 订阅
排序:
Model Predictive Control with Adaptive PLC-based Policy on Low Dimensional State Representation for Industrial Applications
Model Predictive Control with Adaptive PLC-based Policy on L...
收藏 引用
Mediterranean Conference on Control and automation (MED)
作者: Steve Yuwono Andreas Schwung Department of Automation Technology and Learning Systems South Westphalia University of Applied Sciences Soest Germany
In the modern era of manufacturing automation, the integration of sensor technology into the system ensures that data acquisition and analysis from complex systems become more efficient than ever. With the support of ...
来源: 评论
A Model-Based Deep learning Approach for Self-learning in Smart Production systems
A Model-Based Deep Learning Approach for Self-Learning in Sm...
收藏 引用
International Conference on Emerging Technologies and Factory automation (ETFA)
作者: Steve Yuwono Andreas Schwung Department of Automation Technology and Learning Systems South Westphalia University of Applied Sciences Soest Germany
In this research, we discuss the impact of combining model-based deep learning and game theory in dynamic games to develop a sample-efficient self-learning methodology for smart production systems. We propose a novel ...
来源: 评论
Mlpro 2.0 - Online Machine learning in Python
SSRN
收藏 引用
SSRN 2025年
作者: Arend, Detlef Baheti, Laxmikant Shrikant Yuwono, Steve Kumar, Syamraj Purushamparambil Satheesh Schwung, Andreas Department of Automation Technology and Learning Systems South Westphalia University of Applied Science Lübecker Ring 2 Soest59494 Germany
In this paper, we present version 2.0 of the open-source middleware MLPro for applied machine learning in Python. Notably, it introduces the new sub-framework MLPro-OA for online machine learning, focusing on standard... 详细信息
来源: 评论
Hierarchical Multiview Top-k Pooling with Deep-Q-Networks
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2024年 第6期5卷 2985-2996页
作者: Li, Zhi-Peng Su, Hai-Long Wu, Yong- Zhang, Qin-Hu Yuan, Chang-An Gribova, Valeriya Filaretov, Vladimir Fedorovich Huang, De-Shuang Eastern Institute of Technology Zhejiang Ningbo315201 China University of Science and Technology of China School of Life Sciences Anhui Hefei230026 China Tongji University Institute of Machine Learning and Systems Biology School of Electronics and Information Engineering Shanghai201804 China Guangxi Academy of Sciences Institute of Big Data and Intelligent Computing Research Center Nanning530007 China Far Eastern Branch of the Russian Academy of Sciences Institute of Automation and Control Processes Vladivostok690041 Russia
Graph neural networks (GNNs) are extensions of deep neural networks to graph-structured data. It has already attracted widespread attention for various tasks such as node classification and link prediction. Existing r... 详细信息
来源: 评论
Gradient-based learning in State-based Potential Games for Self-learning Production systems
Gradient-based Learning in State-based Potential Games for S...
收藏 引用
Annual Conference of Industrial Electronics Society
作者: Steve Yuwono Marlon Löppenberg Dorothea Schwung Andreas Schwung Automation Technology and Learning Systems South Westphalia University of Applied Sciences Soest Germany Artificial Intelligence and Data Science in Automation Technology Hochschule Düsseldorf University of Applied Sciences Düsseldorf Germany
In this paper, we introduce novel gradient-based optimization methods for state-based potential games (SbPGs) within self-learning distributed production systems. SbPGs are recognised for their efficacy in enabling se... 详细信息
来源: 评论
Gradient-based learning in State-based Potential Games for Self-learning Production systems
arXiv
收藏 引用
arXiv 2024年
作者: Yuwono, Steve Löppenberg, Marlon Schwung, Andreas Schwung, Dorothea Automation Technology and Learning Systems South Westphalia University of Applied Sciences Soest Germany Artificial Intelligence and Data Science in Automation Technology Hochschule Düsseldorf University of Applied Sciences Düsseldorf Germany
In this paper, we introduce novel gradient-based optimization methods for state-based potential games (SbPGs) within self-learning distributed production systems. SbPGs are recognised for their efficacy in enabling se... 详细信息
来源: 评论
Impact of Evidence Theory Uncertainty on Training Object Detection Models
arXiv
收藏 引用
arXiv 2024年
作者: Ibrahim, M. Tahasanul Shaik, Rifshu Hussain Schwung, Andreas Department of Automation Technology and Learning Systems South Westphalia University of Applied Sciences Lübecker Ring 2 North Rhine-Westphalia Soest59494 Germany
This paper investigates the use of Evidence Theory to enhance the training efficiency of object detection models by incorporating uncertainty into the feedback loop. In each training iteration, during the validation p... 详细信息
来源: 评论
Stability-Guaranteed Control systems with Min-Max Constraints and Machine learning-Based Virtual Sensors
Stability-Guaranteed Control Systems with Min-Max Constraint...
收藏 引用
IEEE International Conference on systems, Man and Cybernetics
作者: Eric Hilgert Andreas Schwung Department of Technology and Systems Graduate School for Applied Research in North Rhine-Westphalia Bochum Germany Department of Automation Technology and Learning Systems South Westphalia University of Applied Sciences Soest Germany
In this paper, we present a comprehensive approach for designing and analyzing control systems with minmax constraint controllers and machine learning-based virtual sensors. By leveraging the Standard Nonlinear Operat...
来源: 评论
Neural Data Fusion Enhanced PD Control for Precision Drone Landing in Synthetic Environments
Neural Data Fusion Enhanced PD Control for Precision Drone L...
收藏 引用
International Conference on Mechatronics (ICM)
作者: Diyar Altinses David Orlando Salazar Torres Stefan Lier Andreas Schwung Department of Automation Technology and learning systems South Westphalia University of Applied Sciences Soest Germany Department of Logistics and Supply Chain Management South Westphalia University of Applied Sciences Meschede Germany
Unmanned aerial vehicles are increasingly used in applications like surveillance, mapping, and delivery, where precise and safe landings are crucial, especially on small, designated platforms in multimodal systems. Ho... 详细信息
来源: 评论
Model-based Reinforcement learning for Sim-to-Real Transfer in Robotics using HTM neural networks
Model-based Reinforcement Learning for Sim-to-Real Transfer ...
收藏 引用
International Conference on Control, Decision and Information Technologies (CoDIT)
作者: M. R. Diprasetya A. N. Pullani A. Schwung D. Schwung Department of Automation Technology and Learning Systems South Westphalia University of Applied Sciences Soest Germany Department of Artificial Intelligence and Data Science Hochschule Düsseldorf University of Applied Sciences Düsseldorf Germany
In this work we propose a novel approach based on model-based Reinforcement learning (RL) for the sim-to-real transfer of industrial robots. Specifically, we propose to employ a recently developed kinematics-informed,... 详细信息
来源: 评论