咨询与建议

限定检索结果

文献类型

  • 691 篇 会议
  • 481 篇 期刊文献
  • 10 册 图书

馆藏范围

  • 1,182 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 717 篇 工学
    • 391 篇 计算机科学与技术...
    • 343 篇 软件工程
    • 203 篇 控制科学与工程
    • 161 篇 电气工程
    • 120 篇 信息与通信工程
    • 110 篇 机械工程
    • 83 篇 电子科学与技术(可...
    • 68 篇 生物工程
    • 67 篇 生物医学工程(可授...
    • 54 篇 动力工程及工程热...
    • 51 篇 光学工程
    • 49 篇 仪器科学与技术
    • 33 篇 交通运输工程
    • 28 篇 化学工程与技术
    • 22 篇 力学(可授工学、理...
    • 21 篇 航空宇航科学与技...
    • 20 篇 安全科学与工程
    • 19 篇 材料科学与工程(可...
  • 359 篇 理学
    • 169 篇 数学
    • 100 篇 物理学
    • 79 篇 系统科学
    • 74 篇 生物学
    • 45 篇 统计学(可授理学、...
    • 35 篇 化学
  • 173 篇 管理学
    • 123 篇 管理科学与工程(可...
    • 56 篇 图书情报与档案管...
    • 49 篇 工商管理
  • 50 篇 医学
    • 41 篇 临床医学
    • 34 篇 基础医学(可授医学...
    • 28 篇 药学(可授医学、理...
  • 17 篇 经济学
  • 17 篇 法学
  • 6 篇 农学
  • 5 篇 教育学
  • 4 篇 艺术学
  • 2 篇 文学
  • 1 篇 军事学

主题

  • 29 篇 control systems
  • 29 篇 mathematical mod...
  • 24 篇 automation
  • 24 篇 neural networks
  • 21 篇 robustness
  • 20 篇 laboratories
  • 18 篇 image segmentati...
  • 18 篇 optimization
  • 17 篇 cellular neural ...
  • 16 篇 reinforcement le...
  • 16 篇 computational mo...
  • 16 篇 automatic contro...
  • 16 篇 machine learning
  • 16 篇 artificial intel...
  • 16 篇 computer network...
  • 15 篇 computer archite...
  • 14 篇 semantics
  • 14 篇 nonlinear system...
  • 14 篇 sensors
  • 14 篇 training

机构

  • 29 篇 department of au...
  • 22 篇 school of automa...
  • 21 篇 college of compu...
  • 21 篇 department of au...
  • 20 篇 institute of aut...
  • 17 篇 school of automa...
  • 16 篇 school of artifi...
  • 15 篇 infn sezione di ...
  • 15 篇 north-west unive...
  • 15 篇 université de st...
  • 15 篇 ncsr demokritos ...
  • 15 篇 infn sezione di ...
  • 15 篇 infn sezione di ...
  • 15 篇 comenius univers...
  • 15 篇 infn sezione di ...
  • 15 篇 universitat poli...
  • 15 篇 czech technical ...
  • 15 篇 università di ge...
  • 15 篇 cadi ayyad unive...
  • 14 篇 institut univers...

作者

  • 39 篇 niyato dusit
  • 37 篇 kang jiawen
  • 21 篇 du hongyang
  • 20 篇 zhu dajiang
  • 20 篇 liu zhengliang
  • 20 篇 li xiang
  • 19 篇 xiong zehui
  • 19 篇 liu tianming
  • 17 篇 wu zihao
  • 15 篇 chen a.
  • 15 篇 benoit d.m.
  • 15 篇 ferrara g.
  • 15 篇 ardid m.
  • 15 篇 calvo d.
  • 15 篇 eddymaoui a.
  • 15 篇 kulikovskiy v.
  • 15 篇 gal t.
  • 15 篇 bozza c.
  • 15 篇 díaz a.f.
  • 15 篇 boumaaza j.

语言

  • 965 篇 英文
  • 207 篇 其他
  • 13 篇 中文
检索条件"机构=Automation and Computing Engineering Department"
1182 条 记 录,以下是461-470 订阅
排序:
FIRE: a dataset for feedback integration and refinement evaluation of multimodal models  24
FIRE: a dataset for feedback integration and refinement eval...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Pengxiang Li Zhi Gao Bofei Zhang Tao Yuan Yuwei Wu Mehrtash Harandi Yunde Jia Song-Chun Zhu Qing Li Beijing Key Laboratory of Intelligent Information Technology School of Computer Science & Technology Beijing Institute of Technology and State Key Laboratory of General Artificial Intelligence BIGAI State Key Laboratory of General Artificial Intelligence BIGAI and State Key Laboratory of General Artificial Intelligence Peking University State Key Laboratory of General Artificial Intelligence BIGAI Beijing Key Laboratory of Intelligent Information Technology School of Computer Science & Technology Beijing Institute of Technology and Guangdong Laboratory of Machine Perception and Intelligent Computing Shenzhen MSU-BIT University Department of Electrical and Computer System Engineering Monash University Guangdong Laboratory of Machine Perception and Intelligent Computing Shenzhen MSU-BIT University and Beijing Key Laboratory of Intelligent Information Technology School of Computer Science & Technology Beijing Institute of Technology State Key Laboratory of General Artificial Intelligence BIGAI and State Key Laboratory of General Artificial Intelligence Peking University and Department of Automation Tsinghua University
Vision language models (VLMs) have achieved impressive progress in diverse applications, becoming a prevalent research direction. In this paper, we build FIRE, a feedback-refinement dataset, consisting of 1.1M multi-t...
来源: 评论
Distributed adaptive finite-time time-varying group formation tracking for high-order multi-agent systems with directed topologies
Distributed adaptive finite-time time-varying group formatio...
收藏 引用
第三十九届中国控制会议
作者: Lei Tian Yongzhao Hua Xiwang Dong Qingdong Li Zhang Ren School of Automation Science and Electrical Engineering Beihang University Department of Aerospace Engineering University of Bristol Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University
This paper investigates finite-time time-varying group formation(TVGF) tracking control problems for high-order multi-agent systems(MASs) with directed topologies. Firstly, the agents are classified into three typ... 详细信息
来源: 评论
A Secure Healthcare 5.0 System Based on Blockchain Technology Entangled with Federated Learning Technique
arXiv
收藏 引用
arXiv 2022年
作者: Rehman, Abdur Abbas, Sagheer Khan, M.A. Ghazal, Taher M. Adnan, Khan Muhammad Mosavi, Amir School of Computer Science National College of Business Administration and Economics Lahore54000 Pakistan Riphah School of Computing and Innovation Faculty of Computing Riphah International university Pakistan School of Information Technology Skyline University College University City Sharjah Sharjah1797 United Arab Emirates Selangor Bangi43600 Malaysia Department of Software Gachon University Seongnam13120 Korea Republic of Institute of Information Engineering Automation and Mathematics Slovak University of Technology in Bratislava Bratislava81107 Slovakia John von Neumann Faculty of Informatics Obuda University Budapest1034 Hungary Faculty of Civil Engineering TU-Dresden Dresden01062 Germany
In recent years, the global Internet of Medical Things (IoMT) industry has evolved at a tremendous speed. Security and privacy are key concerns on the IoMT, owing to the huge scale and deployment of IoMT networks. Mac... 详细信息
来源: 评论
How to Exploit Optimization Experience? Revisiting Evolutionary Sequential Transfer Optimization: Part A - Benchmark Problems
TechRxiv
收藏 引用
TechRxiv 2022年
作者: Xue, Xiaoming Yang, Cuie Feng, Lianghuan Zhang, Kai Song, Linqi Tan, Kay Chen The Department of Computer Science City University of Hong Kong Hong Kong The City University of Hong Kong Shenzhen Research Institute Shenzhen518057 China The State Key Laboratory of Synthetical Automation for Process Industries Northeastern University Shenyang110819 China The College of Computer Science Chongqing University Chongqing400044 China The Civil Engineering School Qingdao University of Technology Qingdao266520 China The Department of Computing Hong Kong Polytechnic University Hong Kong
Evolutionary sequential transfer optimization (ESTO), which attempts to enhance the evolutionary search of a target task using the knowledge captured from several previously-solved source tasks, has been receiving inc... 详细信息
来源: 评论
APG-DPNet: A dual-path network with anatomical priors for perigastric veins segmentation and varicosity quantification
收藏 引用
Neurocomputing 2025年 649卷
作者: Kun Zhang Chenggang Wu Wenkai Wei Fengxiu Yan Lin Wang Peijian Zhang Liang Hua Lei Cui School of Electrical Engineering and Automation Nantong University Nantong 226001 Jiangsu China Nantong Key Laboratory of Intelligent Control and Intelligent Computing Nantong Institute of Technology Nantong 226001 Jiangsu China Department of Radiology Affiliated Hospital 2 of Nantong University Nantong 226001 Jiangsu China
The precise diagnosis of Pancreatic Portal Hypertension (PPH) hinges on the accurate anatomical localization and quantitative morphological assessment of perigastric veins. In order to address the deficiencies of conv...
来源: 评论
How to Exploit Optimization Experience? Revisiting Evolutionary Sequential Transfer Optimization: Part B - Algorithm Analysis
TechRxiv
收藏 引用
TechRxiv 2022年
作者: Xue, Xiaoming Yang, Cuie Feng, Lianghuan Zhang, Kai Song, Linqi Tan, Kay Chen The Department of Computer Science City University of Hong Kong Hong Kong The City University of Hong Kong Shenzhen Research Institute Shenzhen518057 China The State Key Laboratory of Synthetical Automation for Process Industries Northeastern University Shenyang110819 China The College of Computer Science Chongqing University Chongqing400044 China The Civil Engineering School Qingdao University of Technology Qingdao266520 China The Department of Computing Hong Kong Polytechnic University Hong Kong
This paper is the second part of a two-part series on evolutionary sequential transfer optimization (ESTO). The first part designs a problem generator to generate benchmark problems with diverse properties that can be... 详细信息
来源: 评论
Initial Study on Implementation of Smoothing Filters for the Purpose of Bioimpedance Spectroscopy Parameters Classification
收藏 引用
IFAC-PapersOnLine 2022年 第4期55卷 393-398页
作者: Aleksandra Kawala-Sterniuk Amir F. Al-Bakri Mariusz Pelc Katarzyna Cichoń Wojciech Chlewicki Stepan Ozana Radek Martinek Jakub Możaryn Volodymyr Khoma Halyna Kenyo Edward Jacek Gorzelańczyk Michał Podpora Jarosław Zygarlicki Opole University of Technology Faculty of Electrical Engineering Automatic Control and Informatics 45-758 Opole Poland Department of Biomedical Engineering College of Engineering University of Babylon 51001 Babylon Iraq University of Greenwich School of Computing and Mathematical Sciences SE10 9LS London UK West Pomeranian University of Technology in Szczecin Faculty of Electrical Engineering 70-313 Szczecin Poland Faculty of Mechatronics Warsaw University of Technology 02-525 Warsaw Poland Lviv Polytechnic National University Institute of Computer Technologies Automation and Metrology Lviv Ukraine Institute of Philosophy Kazimierz Wielki University 85-092 Bydgoszcz Poland Faculty of Mathematics and Computer Science Adam Mickiewicz University in Poznań 61-614 Poznań Poland
Bioimpedance is a commonly used method for various conditions monitoring. In this paper, the authors carried out some research where they implemented various smoothing filters to enable identification of the bioimpeda... 详细信息
来源: 评论
Foundation models and intelligent decision-making: Progress, challenges, and perspectives
收藏 引用
Innovation 2025年 第6期6卷 100948页
作者: Huang, Jincai Xu, Yongjun Wang, Qi Wang, Qi [Cheems] Liang, Xingxing Wang, Fei Zhang, Zhao Wei, Wei Zhang, Boxuan Huang, Libo Chang, Jingru Ma, Liantao Ma, Ting Liang, Yuxuan Zhang, Jie Guo, Jian Jiang, Xuhui Fan, Xinxin An, Zhulin Li, Tingting Li, Xuefei Shao, Zezhi Qian, Tangwen Sun, Tao Diao, Boyu Yang, Chuanguang Yu, Chenqing Wu, Yiqing Li, Mengxian Zhang, Haifeng Zeng, Yongcheng Zhang, Zhicheng Zhu, Zhengqiu Lv, Yiqin Li, Aming Chen, Xu An, Bo Xiao, Wei Bai, Chenguang Mao, Yuxing Yin, Zhigang Gui, Sheng Su, Wentao Zhu, Yinghao Gao, Junyi He, Xinyu Li, Yizhou Jin, Guangyin Ao, Xiang Zhai, Xuehao Tan, Haoran Yun, Lijun Shi, Hongquan Li, Jun Fan, Changjun Huang, Kuihua Harrison, Ewen Leung, Victor C.M. Qiu, Sihang Dong, Yanjie Zheng, Xiaolong Wang, Gang Zheng, Yu Wang, Yuanzhuo Guo, Jiafeng Wang, Lizhe Cheng, Xueqi Wang, Yaonan Yang, Shanlin Fu, Mengyin Fei, Aiguo Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Department of Automation Tsinghua University Beijing100084 China Huazhong University of Science and Technology Wuhan430074 China School of Automation Beijing Institute of Technology Beijing100081 China School of Information Science and Engineering Dalian Polytechnic University Dalian116034 China National Engineering Research Center for Software Engineering Peking University Beijing100871 China Department of Oral Implantology Peking University School and Hospital of Stomatology Beijing100081 China Guangzhou511453 China College of Information and Electrical Engineering China Agricultural University Beijing100083 China IDEA Research International Digital Economy Academy Shenzhen518057 China Institute of Automation Chinese Academy of Sciences Beijing100190 China The State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences Beijing100190 China College of Science National University of Defense Technology Changsha410073 China Center for Systems and Control College of Engineering Peking University Beijing100871 China Gaoling School of Artificial Intelligence Renmin University of China Beijing100872 China College of Systems Engineering National University of Defense Technology Changsha410073 China Laboratory for Big Data and Decision National University of Defense Technology Changsha410073 China College of Computing and Data Science Nanyang Technological University Singapore639798 Singapore School of Electrical Engineering Chongqing University Chongqing400044 China Department of Mathematics The University of Hong Kong Hong Kong SAR999077 China School of Food Science and Technology Dalian Polytechnic University Dalian116034 China Centre for Medical Informatics University of Edinburgh EdinburghEH16 4UX United Kingdom Department of Stomatology Peking Union Medical College Hospital Chinese Academ
Intelligent decision-making (IDM) is a cornerstone of artificial intelligence (AI) designed to automate or augment decision processes. Modern IDM paradigms integrate advanced frameworks to enable intelligent agents to... 详细信息
来源: 评论
A deep learning-based approach to extracting periosteal and endosteal contours of proximal femur in quantitative CT images
arXiv
收藏 引用
arXiv 2021年
作者: Deng, Yu Wang, Ling Zhao, Chen Tang, Shaojie Cheng, Xiaoguang Deng, Hong-Wen Zhou, Weihua School of Automation Xi'an University of Posts and Telecommunications Xi'an Shaanxi710121 China Department of Radiology Beijing Jishuitan Hospital Beijing100035 China College of computing Michigan Technological university HoughtonMI49931 United States Tulane University Department of Biomedical Engineering New OrleansLA70118 United States
Objective: Automatic CT segmentation of proximal femur is crucial for the diagnosis and risk stratification of orthopedic diseases. In this study, we proposed an approach based on deep learning for the automatic extra... 详细信息
来源: 评论
Prompt engineering for Healthcare: Methodologies and Applications
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Jiaqi Shi, Enze Yu, Sigang Wu, Zihao Ma, Chong Dai, Haixing Yang, Qiushi Kang, Yanqing Wu, Jinru Hu, Huawen Yue, Chenxi Zhang, Haiyang Liu, Yiheng Pan, Yi Liu, Zhengliang Sun, Lichao Li, Xiang Ge, Bao Jiang, Xi Zhu, Dajiang Yuan, Yixuan Shen, Dinggang Liu, Tianming Zhang, Shu The School of Computer Science Northwestern Polytechnical University Xi’an710072 China The School of Automation Northwestern Polytechnical University Xi’an710072 China The School of Computing The University of Georgia Athens30602 United States The Department of Computer Science and Engineering Lehigh University PA18015 United States The Department of Radiology Massachusetts General Hospital Harvard Medical School Boston02115 United States The Department of Computer Science and Engineering The University of Texas at Arlington Arlington76019 United States The School of Biomedical Engineering ShanghaiTech University Shanghai201210 China Shanghai United Imaging Intelligence Co. Ltd. Shanghai200230 China Shanghai Clinical Research and Trial Center Shanghai201210 China The Department of Electronic Engineering City University of Hong Kong 999077 Hong Kong The Department of Electronic Engineering Chinese University of Hong Kong 999077 Hong Kong The School of Physics and Information Technology Shaanxi Normal University Xi’an710119 China The School of Glasgow College University of Electronic Science and Technology of China Chengdu611731 China The School of Life Science and Technology University of Electronic Science and Technology of China Chengdu611731 China
Prompt engineering is a critical technique in the field of natural language processing that involves designing and optimizing the prompts used to input information into models, aiming to enhance their performance on s... 详细信息
来源: 评论