Auditory perception is one of the most important functions for robotics applications. Microphone arrays are widely used for auditory perception in which the spatial structure of microphones is usually known. In practi...
详细信息
To test adaptation hypotheses about the evolution of animals, we need information about the behavior of phenotypically-variable individuals in a specific environment. To model behavior of ancient fish-like vertebrates...
详细信息
To test adaptation hypotheses about the evolution of animals, we need information about the behavior of phenotypically-variable individuals in a specific environment. To model behavior of ancient fish-like vertebrates, we previously combined evolutionary robotics and software simulations to create autonomous biomimetic swimmers in a simple aquatic environment competing and foraging for a single source of food. This system allowed us to test the hypothesis that selection for improved forage navigation drove the evolution of stiffer tails. In this paper, we extend our framework to evaluate more complex environments and hypotheses. Specifically, we test the hypothesis that predator-prey dynamics and the need for effective foraging strategies, operating simultaneously, were key selection pressures driving the evolution of morphological and sensory traits in early, fish-like vertebrates. Three evolvable traits were chosen because of their importance in propulsion and predator avoidance: (1) the number of vertebrae in the axial skeleton, (2) the trailing edge span of the caudal fin, and (3) the sensitivity of the sensory lateral line. To produce variable offspring, we used a genetic algorithm that rewarded parents with high fitness, allowing them to mate randomly and combine their mutated gametes. Offspring were then instantiated as autonomous embodied robots, the prey. These prey were chased by a non-evolving autonomous predator. Both kinds of robots were surface swimmers. The prey used a control architecture based on that of living fish: a two-layer subsumption architecture with predator escape over-riding steady swimming during foraging. The performance of six different prey robots in each generation was judged with a relative fitness function that rewarded a combination of high speed, rapid escape acceleration, escape responses, and the ability to stay away from the predator while at the same time staying close to the food source. This approach, which we call biomimet
In the spring of 2007, Worcester Polytechnic Institute introduced a BS degree program in roboticsengineering. The degree program is a collaborative effort, involving faculty from the departments of computer Science, ...
详细信息
Unmanned vehicle is future vehicle technology. Lateral control technology and longitudinal control technology are needed for unmanned vehicle. Automatic steering system is lateral control technology. A automatic steer...
详细信息
Visual surveillance with dynamic background is one of the most active research topics in computer vision. Especially, researches for abandoned detection in the public place have been caused by preventing terror and ac...
详细信息
Visual surveillance with dynamic background is one of the most active research topics in computer vision. Especially, researches for abandoned detection in the public place have been caused by preventing terror and accident. Previous researches for abandoned detection have been based on a static image and used an image difference. In this paper we present an algorithm for a mobile robot and we use optical flow for detecting a static object and distances from abandoned objects. For this purpose, we find abandoned objects and predict a position of objects using a mobile robot visual system with a single camera.
The third international conference on Human-Robot Interaction (HRI-2008) was held in Amsterdam, The Netherlands, March 12-15, 2008. The theme of HRI-2008, "living with robots," highlights the importance of t...
详细信息
An integrated system for minimally invasive robot-assisted image-guided lung brachytherapy has been developed. The system incorporates an experimental setup for accurate radioactive seed placement with commercially av...
详细信息
An integrated system for minimally invasive robot-assisted image-guided lung brachytherapy has been developed. The system incorporates an experimental setup for accurate radioactive seed placement with commercially available dosimetry planning software. The end result is a complete system that allows planning and executing a brachytherapy procedure with increased accuracy. The results of the in vitro seed placement evaluation show that seed misplacement has a significant effect on the volume receiving more than 200% of the dose (V200), and the minimum dosage received by 90% of the volume (D90).
作者:
Yi-Sheng HuangSheng-Luen ChungMu-Der JengDepartment of Aeronautical Engineering
Chung Cheng Institute of Technology National Defense University Tashi Taoyuan 335 Taiwan R.O.C. Department of Electrical Engineering
National Taiwan University of Science and Technology Taipei 106 Taiwan R.O.C. Department of Electrical Engineering
National Taiwan Ocean University Kellung 202 Taiwan R.O.C. MuDer Jeng received the Ph.D. degree in computer and systems engineering from Rensselaer Polytechnic Institute
Troy NY in 1992. Since August 1992 Dr. Jeng has been with National Taiwan Ocean University Keelung Taiwan where he is currently a full Professor at the Department of Electrical Engineering. His current research interests include Petri nets discrete event systems computer integrated manufacturing semiconductor factory automation embedded systems. Dr. Jeng is the author/co-author of over 120 book chapters journal papers and conference papers. Dr. Jeng received the Franklin V. Taylor Outstanding Paper Award from the IEEE Systems Man and Cybernetics Society in 1993. He was granted the Research Award by the National Science Council of Taiwan annually from 1994 to 2000. He is an Associate Editor for IEEE Transactions on Systems Man and Cybernetics-Part A IEEE Transactions on Robotics and Automation IEEE Transactions on Robotics and serves on the Editorial Board of International Journal of Computer Integrated Manufacturing. He has been a Guest Editor for eight leading journals. Dr. Jeng is the Chair of the Technical Committee on Discrete Event Systems of the IEEE SMC Society and the Founding Chair of the Technical Committee on Semiconductor Factory Automation of the IEEE Robotics and Automation Society. He served as the Exhibitions Chair of 2003 IEEE International Conference on Robotics and Automation and the Special Sessions Chair of 2004 IEEE International Conference on Networking Sensing and Control. He serves as a Program Co-Chair of 2005 IEEE International Conference on Networking Sensing and Control and the Organization Commit
Statechart has been utilized as a visual formalism for the modeling of complex and interactive systems for its illuminating features on describing properties of causality, concurrency, and synchronization. This paper ...
详细信息
Statechart has been utilized as a visual formalism for the modeling of complex and interactive systems for its illuminating features on describing properties of causality, concurrency, and synchronization. This paper presents the application of satechart to the modeling, design and implementation of an elevator system, whose system behavior involves aggregating complexity of state descriptions, and imposition of underlying control policy. Based on the operational flow of an elevator, we derive the associated statechart model by looking into the inherent hierarchical structure of the elevator. The advantage of the proposed approach is the clear presentation of system behavior in terms of conditions and events that cause the transitions in system dynamics. Implementation of the controlled elevator based on the modeled statechart is also presented.
暂无评论