咨询与建议

限定检索结果

文献类型

  • 51 篇 会议
  • 34 篇 期刊文献

馆藏范围

  • 85 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 57 篇 工学
    • 33 篇 计算机科学与技术...
    • 32 篇 软件工程
    • 28 篇 控制科学与工程
    • 14 篇 机械工程
    • 9 篇 仪器科学与技术
    • 8 篇 光学工程
    • 8 篇 信息与通信工程
    • 8 篇 生物工程
    • 4 篇 建筑学
    • 4 篇 化学工程与技术
    • 4 篇 交通运输工程
    • 4 篇 生物医学工程(可授...
    • 4 篇 安全科学与工程
    • 3 篇 土木工程
    • 3 篇 航空宇航科学与技...
    • 2 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 船舶与海洋工程
  • 19 篇 理学
    • 8 篇 物理学
    • 8 篇 生物学
    • 4 篇 数学
    • 4 篇 化学
    • 3 篇 统计学(可授理学、...
    • 1 篇 地质学
    • 1 篇 系统科学
  • 3 篇 管理学
    • 2 篇 图书情报与档案管...
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 9 篇 robot sensing sy...
  • 8 篇 three-dimensiona...
  • 7 篇 laser radar
  • 7 篇 service robots
  • 6 篇 cameras
  • 6 篇 mobile robots
  • 6 篇 humanoid robots
  • 6 篇 semantics
  • 5 篇 trajectory
  • 4 篇 robots
  • 4 篇 real-time system...
  • 4 篇 navigation
  • 4 篇 anthropomorphic ...
  • 4 篇 accuracy
  • 4 篇 training
  • 3 篇 legged locomotio...
  • 3 篇 object detection
  • 3 篇 robot
  • 3 篇 reinforcement le...
  • 3 篇 image segmentati...

机构

  • 9 篇 autonomous intel...
  • 3 篇 institute for co...
  • 3 篇 autonomous intel...
  • 3 篇 autonomous intel...
  • 2 篇 fraunhofer iais
  • 2 篇 institute for co...
  • 2 篇 faculty of engin...
  • 2 篇 computer science...
  • 2 篇 fraunhofer fit
  • 2 篇 fraunhofer iml
  • 2 篇 criis - centre f...
  • 2 篇 beijing advanced...
  • 2 篇 tu dortmund
  • 2 篇 humanoid robots ...
  • 2 篇 bosch center for...
  • 2 篇 lamarr institute...
  • 2 篇 the autonomous i...
  • 2 篇 autonomous intel...
  • 2 篇 university of bo...
  • 2 篇 autonomous intel...

作者

  • 37 篇 behnke sven
  • 26 篇 sven behnke
  • 7 篇 schwarz max
  • 6 篇 memmesheimer rap...
  • 6 篇 max schwarz
  • 6 篇 schreiber michae...
  • 5 篇 pätzold bastian
  • 4 篇 kruzhkov evgenii
  • 4 篇 pavlichenko dmyt...
  • 4 篇 bultmann simon
  • 4 篇 fan rui
  • 4 篇 matthias nieuwen...
  • 4 篇 bode jonas
  • 3 篇 splietker malte
  • 3 篇 beul marius
  • 3 篇 villar-corrales ...
  • 3 篇 savinykh alena
  • 3 篇 stückler jörg
  • 3 篇 rochow andre
  • 3 篇 quenzel jan

语言

  • 72 篇 英文
  • 13 篇 其他
检索条件"机构=Autonomous Intelligent Systems - Computer Science Institute VI and Center for Robotics"
85 条 记 录,以下是11-20 订阅
排序:
DiffSSC: Semantic LiDAR Scan Completion using Denoising Diffusion Probabilistic Models
arXiv
收藏 引用
arXiv 2024年
作者: Cao, Helin Behnke, Sven The Autonomous Intelligent Systems group Computer Science Institute VI – Intelligent Systems and Robotics The Center for Robotics The Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Perception systems play a crucial role in autonomous driving, incorporating multiple sensors and corresponding computer vision algorithms. 3D LiDAR sensors are widely used to capture sparse point clouds of the vehicle... 详细信息
来源: 评论
MOTPose: Multi-object 6D Pose Estimation for Dynamic video Sequences using Attention-based Temporal Fusion
arXiv
收藏 引用
arXiv 2024年
作者: Periyasamy, Arul Selvam Behnke, Sven the Autonomous Intelligent Systems group Computer Science Institute VI – Intelligent Systems and Robotics the Center for Robotics the Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Cluttered bin-picking environments are challenging for pose estimation models. Despite the impressive progress enabled by deep learning, single-view RGB pose estimation models perform poorly in cluttered dynamic envir... 详细信息
来源: 评论
A Comparison of Prompt Engineering Techniques for Task Planning and Execution in Service robotics
A Comparison of Prompt Engineering Techniques for Task Plann...
收藏 引用
IEEE-RAS International Conference on Humanoid Robots
作者: Jonas Bode Bastian Pätzold Raphael Memmesheimer Sven Behnke Autonomous Intelligent Systems group Computer Science Institute VI – Intelligent Systems and Robotics Lamarr Institute for Machine Learning and Artificial Intelligence and Center for Robotics University of Bonn Germany
Recent advances in Large Language Models (LLMs) have been instrumental in autonomous robot control and human-robot interaction by leveraging their vast general knowledge and capabilities to understand and reason acros... 详细信息
来源: 评论
Grasp Anything: Combining Teacher-Augmented Policy Gradient Learning with Instance Segmentation to Grasp Arbitrary Objects
Grasp Anything: Combining Teacher-Augmented Policy Gradient ...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Malte Mosbach Sven Behnke Autonomous Intelligent Systems Group Computer Science Institute VI – Intelligent Systems and Robotics – and the Center for Robotics and the Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Interactive grasping from clutter, akin to human dexterity, is one of the longest-standing problems in robot learning. Challenges stem from the intricacies of visual perception, the demand for precise motor skills, an... 详细信息
来源: 评论
SLCF-Net: Sequential LiDAR-Camera Fusion for Semantic Scene Completion using a 3D Recurrent U-Net
arXiv
收藏 引用
arXiv 2024年
作者: Cao, Helin Behnke, Sven Autonomous Intelligent Systems group Computer Science Institute VI-Intelligent Systems and Robotics Center for Robotics and the Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
We introduce SLCF-Net, a novel approach for the Semantic Scene Completion (SSC) task that sequentially fuses LiDAR and camera data. It jointly estimates missing geometry and semantics in a scene from sequences of RGB ... 详细信息
来源: 评论
SLCF-Net: Sequential LiDAR-Camera Fusion for Semantic Scene Completion using a 3D Recurrent U-Net
SLCF-Net: Sequential LiDAR-Camera Fusion for Semantic Scene ...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Helin Cao Sven Behnke Autonomous Intelligent Systems Group Computer Science Institute VI – Intelligent Systems and Robotics – and the Center for Robotics and the Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
We introduce SLCF-Net, a novel approach for the Semantic Scene Completion (SSC) task that sequentially fuses LiDAR and camera data. It jointly estimates missing geometry and semantics in a scene from sequences of RGB ... 详细信息
来源: 评论
Grasp Anything: Combining Teacher-Augmented Policy Gradient Learning with Instance Segmentation to Grasp Arbitrary Objects
arXiv
收藏 引用
arXiv 2024年
作者: Mosbach, Malte Behnke, Sven The Autonomous Intelligent Systems group Computer Science Institute VI - Intelligent Systems and Robotics The Center for Robotics The Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Interactive grasping from clutter, akin to human dexterity, is one of the longest-standing problems in robot learning. Challenges stem from the intricacies of visual perception, the demand for precise motor skills, an... 详细信息
来源: 评论
MOTPose: Multi-object 6D Pose Estimation for Dynamic video Sequences using Attention-based Temporal Fusion
MOTPose: Multi-object 6D Pose Estimation for Dynamic Video S...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Arul Selvam Periyasamy Sven Behnke Autonomous Intelligent Systems Group Computer Science Institute VI – Intelligent Systems and Robotics – and the Center for Robotics and the Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
Cluttered bin-picking environments are challenging for pose estimation models. Despite the impressive progress enabled by deep learning, single-view RGB pose estimation models perform poorly in cluttered dynamic envir... 详细信息
来源: 评论
PlaySlot: Learning Inverse Latent Dynamics for Controllable Object-Centric video Prediction and Planning
arXiv
收藏 引用
arXiv 2025年
作者: villar-Corrales, Angel Behnke, Sven Computer Science Institute VI – Intelligent Systems and Robotics Center for Robotics The Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Predicting future scene representations is a crucial task for enabling robots to understand and interact with the environment. However, most existing methods rely on video sequences and simulations with precise action... 详细信息
来源: 评论
MCDS-VSS: Moving Camera Dynamic Scene video Semantic Segmentation by Filtering with Self-Supervised Geometry and Motion
arXiv
收藏 引用
arXiv 2024年
作者: villar-Corrales, Angel Austermann, Moritz Behnke, Sven Autonomous Intelligent Systems Computer Science Institute VI Center for Robotics Lamarr Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
autonomous systems, such as self-driving cars, rely on reliable semantic environment perception for decision making. Despite great advances in video semantic segmentation, existing approaches ignore important inductiv... 详细信息
来源: 评论