咨询与建议

限定检索结果

文献类型

  • 46 篇 期刊文献
  • 34 篇 会议

馆藏范围

  • 80 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 61 篇 工学
    • 50 篇 计算机科学与技术...
    • 30 篇 软件工程
    • 27 篇 控制科学与工程
    • 13 篇 生物工程
    • 9 篇 电气工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 生物医学工程(可授...
    • 2 篇 材料科学与工程(可...
    • 2 篇 信息与通信工程
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 1 篇 机械工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 网络空间安全
  • 34 篇 理学
    • 26 篇 数学
    • 14 篇 生物学
    • 9 篇 统计学(可授理学、...
    • 3 篇 物理学
    • 1 篇 系统科学
  • 8 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 5 篇 教育学
    • 4 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
    • 2 篇 临床医学
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 10 篇 reinforcement le...
  • 5 篇 robot programmin...
  • 4 篇 deep learning
  • 4 篇 training
  • 3 篇 demonstrations
  • 3 篇 task analysis
  • 3 篇 contrastive lear...
  • 3 篇 robots
  • 3 篇 machine learning
  • 3 篇 curricula
  • 2 篇 variational infe...
  • 2 篇 grasping
  • 2 篇 policy search
  • 2 篇 markov processes
  • 2 篇 intelligent robo...
  • 2 篇 manipulators
  • 2 篇 versatile skill ...
  • 2 篇 modal analysis
  • 2 篇 approximate infe...
  • 2 篇 markov chain mon...

机构

  • 15 篇 autonomous learn...
  • 15 篇 autonomous learn...
  • 10 篇 autonomous learn...
  • 10 篇 intuitive robots...
  • 6 篇 karlsruhe inst t...
  • 6 篇 bosch center for...
  • 6 篇 kit autonomous l...
  • 5 篇 intelligent auto...
  • 4 篇 bosch center for...
  • 4 篇 university of tü...
  • 4 篇 fzi research cen...
  • 4 篇 lcas university ...
  • 4 篇 institute of veh...
  • 3 篇 fzi res ctr info...
  • 2 篇 tech univ denmar...
  • 2 篇 indian institute...
  • 2 篇 bosch corporate ...
  • 2 篇 autonomous learn...
  • 2 篇 autonomous learn...
  • 2 篇 mpi for intellig...

作者

  • 62 篇 neumann gerhard
  • 19 篇 becker philipp
  • 17 篇 celik onur
  • 12 篇 blessing denis
  • 11 篇 freymuth niklas
  • 10 篇 lioutikov rudolf
  • 10 篇 jia xiaogang
  • 8 篇 gerhard neumann
  • 8 篇 ziesche hanna
  • 8 篇 taranovic aleksa...
  • 8 篇 vien ngo anh
  • 7 篇 zhou hongyi
  • 7 篇 li ge
  • 7 篇 dahlinger philip...
  • 7 篇 gao ning
  • 7 篇 arenz oleg
  • 5 篇 onur celik
  • 5 篇 shaj vaisakh
  • 5 篇 reuss moritz
  • 4 篇 volpp michael

语言

  • 75 篇 英文
  • 5 篇 其他
检索条件"机构=Autonomous Learning Robots"
80 条 记 录,以下是11-20 订阅
排序:
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling  41
Beyond ELBOs: A Large-Scale Evaluation of Variational Method...
收藏 引用
41st International Conference on Machine learning (ICML)
作者: Blessing, Denis Jia, Xiaogang Esslinger, Johannes Vargas, Francisco Neumann, Gerhard Karlsruhe Inst Technol Autonomous Learning Robots Karlsruhe Germany Univ Cambridge Cambridge England FZI Res Ctr Informat Technol Karlsruhe Germany
Monte Carlo methods, Variational Inference, and their combinations play a pivotal role in sampling from intractable probability distributions. However, current studies lack a unified evaluation framework, relying on d... 详细信息
来源: 评论
Information Maximizing Curriculum: A Curriculum-Based Approach for Imitating Diverse Skills  37
Information Maximizing Curriculum: A Curriculum-Based Approa...
收藏 引用
37th Conference on Neural Information Processing Systems (NeurIPS)
作者: Blessing, Denis Celik, Onur Jia, Xiaogang Reuss, Moritz Li, Maximilian Xiling Lioutikov, Rudolf Neumann, Gerhard Karlsruhe Inst Technol Autonomous Learning Robots Karlsruhe Germany Karlsruhe Inst Technol Intuit Robots Lab Karlsruhe Germany FZI Res Ctr Informat Technol Karlsruhe Germany
Imitation learning uses data for training policies to solve complex tasks. However, when the training data is collected from human demonstrators, it often leads to multimodal distributions because of the variability i... 详细信息
来源: 评论
Variational distillation of diffusion policies into mixture of experts  24
Variational distillation of diffusion policies into mixture ...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Hongyi Zhou Denis Blessing Ge Li Onur Celik Xiaogang Jia Gerhard Neumann Rudolf Lioutikov Intuitive Robots Lab Karlsruhe Institute of Technology Autonomous Learning Robots Karlsruhe Institute of Technology Autonomous Learning Robots Karlsruhe Institute of Technology and FZI Research Center for Information Technology Intuitive Robots Lab Karlsruhe Institute of Technology and Autonomous Learning Robots Karlsruhe Institute of Technology
This work introduces Variational Diffusion Distillation (VDD), a novel method that distills denoising diffusion policies into Mixtures of Experts (MoE) through variational inference. Diffusion Models are the current s...
来源: 评论
Swarm Reinforcement learning for Adaptive Mesh Refinement  37
Swarm Reinforcement Learning for Adaptive Mesh Refinement
收藏 引用
37th Conference on Neural Information Processing Systems (NeurIPS)
作者: Freymuth, Niklas Dahlinger, Philipp Wuerth, Tobias Reisch, Simon Kaerger, Luise Neumann, Gerhard Karlsruhe Inst Technol Autonomous Learning Robots Karlsruhe Germany Karlsruhe Inst Technol Inst Vehicle Syst Technol Karlsruhe Germany
Adaptive Mesh Refinement (AMR) enhances the Finite Element Method, an important technique for simulating complex problems in engineering, by dynamically refining mesh regions, enabling a favorable trade-off between co... 详细信息
来源: 评论
Deep Black-Box Reinforcement learning with Movement Primitives  6
Deep Black-Box Reinforcement Learning with Movement Primitiv...
收藏 引用
6th Conference on Robot learning, CoRL 2022
作者: Otto, Fabian Celik, Onur Zhou, Hongyi Ziesche, Hanna Vien, Ngo Anh Neumann, Gerhard Bosch Center for Artificial Intelligence Germany University of Tübingen Germany Autonomous Learning Robots Karlsruhe Institute of Technology Germany
Episode-based reinforcement learning (ERL) algorithms treat reinforcement learning (RL) as a black-box optimization problem where we learn to select a parameter vector of a controller, often represented as a movement ... 详细信息
来源: 评论
ADVERSARIAL IMITATION learning WITH PREFERENCES  11
ADVERSARIAL IMITATION LEARNING WITH PREFERENCES
收藏 引用
11th International Conference on learning Representations, ICLR 2023
作者: Taranovic, Aleksandar Kupcsik, Andras Freymuth, Niklas Neumann, Gerhard Autonomous Learning Robots Lab Karlsruhe Institute of Technology Karlsruhe Germany Bosch Center for Artificial Intelligence Renningen Germany
Designing an accurate and explainable reward function for many Reinforcement learning tasks is a cumbersome and tedious process. Instead, learning policies directly from the feedback of human teachers naturally integr... 详细信息
来源: 评论
What Matters For Meta-learning Vision Regression Tasks?
What Matters For Meta-Learning Vision Regression Tasks?
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Gao, Ning Ziesche, Hanna Ngo Anh Vien Volpp, Michael Neumann, Gerhard Bosch Ctr Artificial Intelligence Stuttgart Germany KIT Autonomous Learning Robots Karlsruhe Germany
Meta-learning is widely used in few-shot classification and function regression due to its ability to quickly adapt to unseen tasks. However, it has not yet been well explored on regression tasks with high dimensional... 详细信息
来源: 评论
Specializing Versatile Skill Libraries using Local Mixture of Experts  5
Specializing Versatile Skill Libraries using Local Mixture o...
收藏 引用
5th Conference on Robot learning (CoRL)
作者: Celik, Onur Zhou, Dongzhuoran Li, Ge Becker, Philipp Neumann, Gerhard KIT Autonomous Learning Robots Karlsruhe Germany
A long-cherished vision in robotics is to equip robots with skills that match the versatility and precision of humans. For example, when playing table tennis, a robot should be capable of returning the ball in various... 详细信息
来源: 评论
Inferring Versatile Behavior from Demonstrations by Matching Geometric Descriptors  6
Inferring Versatile Behavior from Demonstrations by Matching...
收藏 引用
6th Conference on Robot learning (CoRL)
作者: Freymuth, Niklas Schreiber, Nicolas Becker, Philipp Taranovic, Aleksandar Neumann, Gerhard Karlsruhe Inst Technol Autonomous Learning Robots Karlsruhe Germany Bosch Ctr Artificial Intelligence Renningen Germany
Humans intuitively solve tasks in versatile ways, varying their behavior in terms of trajectory-based planning and for individual steps. Thus, they can easily generalize and adapt to new and changing environments. Cur... 详细信息
来源: 评论
MuTT: A Multimodal Trajectory Transformer for Robot Skills
arXiv
收藏 引用
arXiv 2024年
作者: Kienle, Claudius Alt, Benjamin Celik, Onur Becker, Philipp Katic, Darko Jäkel, Rainer Neumann, Gerhard ArtiMinds Robotics Karlsruhe Germany Autonomous Learning Robots KIT Germany
High-level robot skills represent an increasingly popular paradigm in robot programming. However, configuring the skills’ parameters for a specific task remains a manual and time-consuming endeavor. Existing approach... 详细信息
来源: 评论